Name:												
NetID:		_	Lectu		re: A		В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
$A=\{(x,y)\in$	$\mathbb{R}^2 : y = x^2 - 4$	}										
$B = \{(p,q) \in$	$\mathbb{Z}^2 : q < 0\}$											

 $C = \{(a,b) \in \mathbb{R}^2 \ : \ |a| \le 1\}$

Prove that $A \cap B \subseteq C$.

Solution: Proof: Let $(x, y) \in A \cap B$. Then, $(x, y) \in A$ and $(x, y) \in B$. So, from the definition of A, we know that $y = x^2 - 4$. From the definition of B, we know that y < 0 and that x and y are both integers.

 $y = x^2 - 4 = (x - 2)(x + 2)$. So since y < 0, -2 < x < 2. But x is an integer. So the only possible values in this range are -1, 0, -1. Therefore $|x| \le 1$. So $(x, y) \in C$, which is what we needed to prove.

Name:_____ NetID:_ Lecture: Α Β 3 Thursday Discussion: Friday 9 10 11121 $\mathbf{2}$ 4 6 $\mathbf{5}$ $A = \{ (x, y, z) \in \mathbb{R}^3 \mid 0 < x < y - 1 \}$ $B = \{(a, b, c) \in \mathbb{R}^3 \mid b^2 + 2 < c^2\}$ $C = \{ (p, q, r) \in \mathbb{R}^3 \mid p^2 < r^2 \}$

Prove that $A \cap B \subseteq C$.

Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so (x, y, z) is a triple of real numbers with 0 < x < y - 1. Also $(x, y, z) \in B$, so $y^2 + 2 < z^2$.

We know that 0 < x < y-1. Since y-1 > 0, y > 0, so -2y < 0. Squaring both sides of x < y-1 and using the fact that both sides of the equation are positive, we get $x^2 < y^2 - 2y + 1$. So $x^2 < y^2 + 1 < y^2 + 2$. But we know that $y^2 + 2 < z^2$. So we have $x^2 < z^2$, and therefore $(x, y, z) \in C$, which is what we needed to show.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

$$\begin{split} &A = \{ \alpha(2, -4) + (1 - \alpha)(-3, 6)) \ \mid \ \alpha \in \mathbb{R} \} \\ &B = \{ (a, b) \in \mathbb{R}^2 \ \mid \ a \geq 1 \} \\ &C = \{ (p, q) \in \mathbb{R}^2 \ \mid \ q \leq 0 \} \end{split}$$

Prove that $A \cap B \subseteq C$.

Solution: Let (x, y) be a 2D point and suppose that $(x, y) \in A \cap B$. Then $(x, y) \in A$ and $(x, y) \in B$.

Since $(x, y) \in A$, $(x, y) = \alpha(2, -4) + (1 - \alpha)(-3, 6)$ where α is a real number. So $x = 2\alpha - 3(1 - \alpha) = 5\alpha - 3$. And $y = -4\alpha + 6(1 - \alpha) = 6 - 10\alpha$.

Since $(x, y) \in B$, we know that $x \ge 1$. So $5\alpha - 3 \ge 1$. Therefore $\alpha \ge \frac{4}{5}$.

Substituting this into the equation for y, we get $y = 6 - 10\alpha \le 6 - 10\frac{4}{5} = 6 - 8 = -2 \le 0$. Since $y \le 0$, $(x, y) \in C$, which is what we needed to show.

Examlet 3, colored sheet

Name:_____ NetID:_____ Lecture: Α Β Discussion: Thursday $\mathbf{10}$ $\mathbf{11}$ 12 $\mathbf{2}$ 3 Friday 1 6 9 $\mathbf{4}$ $\mathbf{5}$ $A = \{(x,y) \in \mathbb{R}^2 \ : \ y = x^2 - 2x - 1\}$ $B = \{ (p,q) \in \mathbb{R}^2 : |p| \ge 3 \}$ $C = \{(m,n) \in \mathbb{R}^2 : n \ge 0\}$ Prove that $A \cap B \subseteq C$. **Solution:** Let $(x, y) \in \mathbb{R}^2$ and suppose that $(x, y) \in A \cap B$. Then $(x, y) \in A$ and $(x, y) \in B$. Since $(x, y) \in A$, $y = x^2 - 2x - 1$. So y = x(x - 2) - 1. Since $(x, y) \in B$, $|x| \ge 3$. There are two cases: Case 1: $x \ge 3$. Then $x - 2 \ge 1$. So $y \ge 3 \cdot 1 - 1 = 2$. Case 2: $x \le -3$. Then $x - 2 \le -5$. So $x(x - 2) \ge (-3)(-5) = 15$. Therefore $y = x(x - 2) - 1 \ge 14$. In both cases, $y \ge 0$. So $(x, y) \in C$, which is what we needed to prove.

Name:_____ NetID:_____ Lecture: Α Β 3 Discussion: Thursday Friday 10 $\mathbf{11}$ 121 $\mathbf{2}$ 9 6 4 $\mathbf{5}$ $A = \{(x, y, z) \in \mathbb{R}^3 : y = x^2 - 2x + 11\}$ $B = \{(a, b, c) \in \mathbb{R}^3 : b \le c\}$ $C=\{(p,q,r)\in\mathbb{R}^3\ :\ r\geq 5\}$ Prove that $A \cap B \subseteq C$. Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so $y = x^2 - 2x + 11$. Also $(x, y, z) \in B$, so $y \leq z$.

We can rewrite the first equation as $y = (x - 1)^2 + 10$. $(x - 1)^2 \ge 0$ because it's the square of a real number. So $y \ge 10$.

We now have $y \ge 10$ and $y \le z$. Combining these gives us $z \ge 10$. So $z \ge 5$. Therefore $(x, y, z) \in C$, which is what we needed to show.

Name:_____

NetID:	Lecture:	Α	В	
	Locuaro	<u> </u>		

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

$$\begin{split} &A = \{(x,y,z) \in \mathbb{R}^3 \ : \ |x+y+z| = 20\} \\ &B = \{(a,b,c) \in \mathbb{N}^3 \ : \ a+b < 5\} \end{split}$$

 $C = \{ (p, q, r) \in \mathbb{R}^3 : r > 10 \}$

Prove that $A \cap B \subseteq C$.

Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so |x + y + z| = 20. Also $(x, y, z) \in B$, so x + y < 5 and x, y, and z are all natural numbers.

Since x, y, and z are natural numbers, they can't be negative. So x + y + z isn't negative. Therefore x + y + z = |x + y + z| = 20. So z = 20 - (x + y).

Since z = 20 - (x + y) and x + y < 5, z > 15. So z > 10, which means that $(x, y, z) \in C$. This is what we needed to show.

Name:_____ NetID:_____ Lecture: Α Β Discussion: Thursday Friday 109 11121 $\mathbf{2}$ 3 6 $\mathbf{4}$ $\mathbf{5}$

 $A = \{(x, y) \in \mathbb{R}^2 : xy \le -7\}$ $B = \{(p^3, p^2) : p \in \mathbb{R}\}$ $C = \{(a, b) \in \mathbb{R}^2 : a < 0\}$

Prove that $A \cap B \subseteq C$.

Solution: Proof: Let $(x, y) \in A \cap B$. Then, $(x, y) \in A$ and $(x, y) \in B$. So, from the definition of A, we know that $xy \leq -7$. From the definition of B, we know that $x = p^3$ and $y = p^2$, for some real number p.

Since $xy \leq 7 < 0$, we know x and y have opposite signs and neither is zero. Since $y = p^2$, we know that y is positive. So x must be negative.

Since x is negative, $(x, y) \in C$, which is what we needed to prove.

Name:___

NetID:	Lecture:	Α	в	
		11		

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

 $A = \{a(1,0) + b(3,1) + c(2,4) : a, b, c \text{ are positive reals and } a + b + c = 1\}$

 $B = \{(x, y) \in \mathbb{R}^2 \ : \ x \le 3 \text{ and } y \ge 0\}$

Prove that $A \subseteq B$.

Solution: Let $(x, y) \in A$. By the definition of A, (x, y) = a(1, 0) + b(3, 1) + c(2, 4), where a, b, and c are positive reals and a + b + c = 1.

Then (x, y) = (a + 3b + 2c, b + 4c). So x = a + 3b + 2c and y = b + 4c.

We know that a, b, and c are positive, so b + 4c must be positive. So $y \ge 0$.

Since a and c are positive and a + b + c = 1, we have

 $x = a + 3b + 2c \le 3a + 3b + 3c = 3(a + b + c) = 3$

So $y \ge 0$ and $x \le 3$. Therefore (x, y) is in B, by the definition of the set B.