Name:

NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}-4\right\} \\
& B=\left\{(p, q) \in \mathbb{Z}^{2}: q<0\right\} \\
& C=\left\{(a, b) \in \mathbb{R}^{2}:|a| \leq 1\right\}
\end{aligned}
$$

Prove that $A \cap B \subseteq C$.
Solution: Proof: Let $(x, y) \in A \cap B$. Then, $(x, y) \in A$ and $(x, y) \in B$. So, from the definition of A, we know that $y=x^{2}-4$. From the definition of B, we know that $y<0$ and that x and y are both integers.
$y=x^{2}-4=(x-2)(x+2)$. So since $y<0,-2<x<2$. But x is an integer. So the only possible values in this range are $-1,0$, and 1 . Therefore $|x| \leq 1$. So $(x, y) \in C$, which is what we needed to prove.

Name:

\qquad
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

$$
\begin{aligned}
& A=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 0<x<y-1\right\} \\
& B=\left\{(a, b, c) \in \mathbb{R}^{3} \mid b^{2}+2<c^{2}\right\} \\
& C=\left\{(p, q, r) \in \mathbb{R}^{3} \mid p^{2}<r^{2}\right\}
\end{aligned}
$$

Prove that $A \cap B \subseteq C$.
Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so (x, y, z) is a triple of real numbers with $0<x<y-1$. Also $(x, y, z) \in B$, so $y^{2}+2<z^{2}$.

We know that $0<x<y-1$. Since $y-1>0, y>0$, so $-2 y<0$. Squaring both sides of $x<y-1$ and using the fact that both sides of the equation are positive, we get $x^{2}<y^{2}-2 y+1$. So $x^{2}<y^{2}+1<y^{2}+2$. But we know that $y^{2}+2<z^{2}$. So we have $x^{2}<z^{2}$, and therefore $(x, y, z) \in C$, which is what we needed to show.

Name:

\qquad
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& A=\{\alpha(2,-4)+(1-\alpha)(-3,6)) \mid \alpha \in \mathbb{R}\} \\
& B=\left\{(a, b) \in \mathbb{R}^{2} \mid a \geq 1\right\} \\
& C=\left\{(p, q) \in \mathbb{R}^{2} \mid q \leq 0\right\}
\end{aligned}
$$

Prove that $A \cap B \subseteq C$.
Solution: Let (x, y) be a 2D point and suppose that $(x, y) \in A \cap B$. Then $(x, y) \in A$ and $(x, y) \in B$.
Since $(x, y) \in A,(x, y)=\alpha(2,-4)+(1-\alpha)(-3,6))$ where α is a real number. So $x=2 \alpha-3(1-\alpha)=$ $5 \alpha-3$. And $y=-4 \alpha+6(1-\alpha)=6-10 \alpha$.

Since $(x, y) \in B$, we know that $x \geq 1$. So $5 \alpha-3 \geq 1$. Therefore $\alpha \geq \frac{4}{5}$.
Substituting this into the equation for y, we get $y=6-10 \alpha \leq 6-10 \frac{4}{5}=6-8=-2 \leq 0$. Since $y \leq 0,(x, y) \in C$, which is what we needed to show.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$A=\left\{(x, y) \in \mathbb{R}^{2}: y=x^{2}-2 x-1\right\}$
$B=\left\{(p, q) \in \mathbb{R}^{2}:|p| \geq 3\right\}$
$C=\left\{(m, n) \in \mathbb{R}^{2}: n \geq 0\right\}$
Prove that $A \cap B \subseteq C$.
Solution: Let $(x, y) \in \mathbb{R}^{2}$ and suppose that $(x, y) \in A \cap B$. Then $(x, y) \in A$ and $(x, y) \in B$.
Since $(x, y) \in A, y=x^{2}-2 x-1$. So $y=x(x-2)-1$.
Since $(x, y) \in B,|x| \geq 3$. There are two cases:
Case 1: $x \geq 3$. Then $x-2 \geq 1$. So $y \geq 3 \cdot 1-1=2$.
Case 2: $x \leq-3$. Then $x-2 \leq-5$. So $x(x-2) \geq(-3)(-5)=15$. Therefore $y=x(x-2)-1 \geq 14$. In both cases, $y \geq 0$. So $(x, y) \in C$, which is what we needed to prove.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
$A=\left\{(x, y, z) \in \mathbb{R}^{3}: y=x^{2}-2 x+11\right\}$
$B=\left\{(a, b, c) \in \mathbb{R}^{3}: b \leq c\right\}$
$C=\left\{(p, q, r) \in \mathbb{R}^{3}: r \geq 5\right\}$
Prove that $A \cap B \subseteq C$.
Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so $y=x^{2}-2 x+11$. Also $(x, y, z) \in B$, so $y \leq z$.

We can rewrite the first equation as $y=(x-1)^{2}+10 .(x-1)^{2} \geq 0$ because it's the square of a real number. So $y \geq 10$.

We now have $y \geq 10$ and $y \leq z$. Combining these gives us $z \geq 10$. So $z \geq 5$. Therefore $(x, y, z) \in C$, which is what we needed to show.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

$$
\begin{aligned}
& A=\left\{(x, y, z) \in \mathbb{R}^{3}:|x+y+z|=20\right\} \\
& B=\left\{(a, b, c) \in \mathbb{N}^{3}: a+b<5\right\} \\
& C=\left\{(p, q, r) \in \mathbb{R}^{3}: r>10\right\}
\end{aligned}
$$

Prove that $A \cap B \subseteq C$.
Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so $|x+y+z|=20$. Also $(x, y, z) \in B$, so $x+y<5$ and x, y, and z are all natural numbers.

Since x, y, and z are natural numbers, they can't be negative. So $x+y+z$ isn't negative. Therefore $x+y+z=|x+y+z|=20$. So $z=20-(x+y)$.

Since $z=20-(x+y)$ and $x+y<5, z>15$. So $z>10$, which means that $(x, y, z) \in C$. This is what we needed to show.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbb{R}^{2}: x y \leq-7\right\} \\
& B=\left\{\left(p^{3}, p^{2}\right): p \in \mathbb{R}\right\} \\
& C=\left\{(a, b) \in \mathbb{R}^{2}: a<0\right\}
\end{aligned}
$$

Prove that $A \cap B \subseteq C$.
Solution: Proof: Let $(x, y) \in A \cap B$. Then, $(x, y) \in A$ and $(x, y) \in B$. So, from the definition of A, we know that $x y \leq-7$. From the definition of B, we know that $x=p^{3}$ and $y=p^{2}$, for some real number p.

Since $x y \leq 7<0$, we know x and y have opposite signs and neither is zero. Since $y=p^{2}$, we know that y is positive. So x must be negative.

Since x is negative, $(x, y) \in C$, which is what we needed to prove.

Name:

\qquad
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$A=\{a(1,0)+b(3,1)+c(2,4): a, b, c$ are positive reals and $a+b+c=1\}$
$B=\left\{(x, y) \in \mathbb{R}^{2}: x \leq 3\right.$ and $\left.y \geq 0\right\}$
Prove that $A \subseteq B$.
Solution: Let $(x, y) \in A$. By the definition of $A,(x, y)=a(1,0)+b(3,1)+c(2,4)$, where a, b, and c are positive reals and $a+b+c=1$.

Then $(x, y)=(a+3 b+2 c, b+4 c)$. So $x=a+3 b+2 c$ and $y=b+4 c$.
We know that a, b, and c are positive, so $b+4 c$ must be positive. So $y \geq 0$.
Since a and c are positive and $a+b+c=1$, we have

$$
x=a+3 b+2 c \leq 3 a+3 b+3 c=3(a+b+c)=3
$$

So $y \geq 0$ and $x \leq 3$. Therefore (x, y) is in B, by the definition of the set B.

