Name: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b c)=1$, then $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$.

Solution: This is true. If $\operatorname{gcd}(a, b c)=1$, then a doesn't share any prime factors with $b c$. Since the prime factors of b are a subset of these, they also can't overlap with the prime factors of a. Similarly for c.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1568,546)$. Show your work.

Solution:

$1568-546 \times 2=1568-1092=476$
$546-476=70$
$476-70 \times 6=476-420=56$
$70-56=14$
$56-14 \times 3=0$
So the GCD is 14 .
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p and q,
if $\operatorname{lcm}(p, q)=p q$, then p and q are relatively prime. true $\quad \sqrt{ }$ false \square

Zero is a factor of 7 .

Name: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and $c, \operatorname{gcd}(c a, c b)=c \cdot \operatorname{gcd}(a, b)$
Solution: This is true.
c divides both $c a$ and $c b$. So $\operatorname{gcd}(c a, c b)$ must have the form $c m$, where m is an integer. But then $c m$ is the largest integer that divides both $c a$ and $c b$ if and only if m is the largest integer that divides both a and b.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(2015,837)$. Show your work.

Solution:
$2015-837 \times 2=2015-1674=341$
$837-341 \times 2=837-682=155$
$341-155 \times 2=341-310=31$
$155-31 \times 5=0$
So the GCD is 31 .
3. (4 points) Check the (single) box that best characterizes each item.
$\operatorname{gcd}(0,0)$
0

undefined \square
$25 \equiv 4(\bmod 7)$
true $\square \sqrt{ }$ false \square

Name:
NetID:

Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any positive integer $k,(k-1)^{2} \equiv 1(\bmod k)$.
Solution: This is true. Notice that $(k-1)-(-1)=k$. So $k-1 \equiv(-1)(\bmod k)$. Therefore $(k-1)^{2} \equiv(-1)^{2} \equiv 1(\bmod k)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1183,351)$. Show your work.

Solution:

$1183-3 \times 351=1183-1053=130$
$351-2 \times 130=351-260=91$
$130-91=39$
$91-3 \times 39=91-78=13$
$39-3 \times 13=0$
So the GCD is 13 .
3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive and $r=\operatorname{remainder}(a, b)$, then $\operatorname{gcd}(b, r)=\operatorname{gcd}(b, a)$
true

false \square
$7 \mid-7$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, c)=1$.

Solution: This is false. Consider $a=c=3$ and $b=2$. Then a and b have no common factors, i.e. $\operatorname{gcd}(a, b)=1$. Also b and c have no common factors, i.e. $\operatorname{gcd}(b, c)=1$. But $\operatorname{gcd}(a, c)=3$.
2. (6 points) Write pseudocode (iterative or recursive) for a function $\operatorname{gcd}(a, b)$ that implements the Euclidean algorithm. Assume both inputs are positive.

Solution:

$\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& x=a \\
& y=b
\end{aligned}
$$

while $(b>0)$
$\mathrm{r}=$ remainder (a, b)
$\mathrm{a}=\mathrm{b}$
$\mathrm{b}=\mathrm{r}$
return a
3. (4 points) Check the (single) box that best characterizes each item.
$\operatorname{gcd}(p, q)=\frac{p q}{\operatorname{lcm}(p, q)}$
(p and q positive integers)
always $\square \sqrt{ }$ sometimes \square never \square
$-7 \equiv 13(\bmod 6) \quad$ true \square false $\square \sqrt{ }$

Name: \qquad

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any positive integers a, b, and c, if $a \mid b c$, then $a \mid b$ or $a \mid c$
Solution: This is false. Consider $a=6, b=3, c=2$. Then $a \mid b c$, but a doesn't divide either b or c.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1702,1221)$. Show your work.

Solution: $\quad 1702-1221=481$
$1221-481 \times 2=1221-962=259$
$481-259=222$
$259-222=37$
$222-6 \times 37=0$
So the GCD is 37 .
3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive integers and $r=\operatorname{remainder}(a, b)$, then $\operatorname{gcd}(b, r)=\operatorname{gcd}(r, a)$

$29 \equiv 2(\bmod 9) \quad$ true $\quad \sqrt{ }$ false \square

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b)=n$ and $\operatorname{gcd}(a, c)=p$, then $\operatorname{gcd}(a, b c)=n p$.

Solution: This is false. Consider $a=b=c=3$. Then if $\operatorname{gcd}(a, b)=3$ and $\operatorname{gcd}(a, c)=3$, but $\operatorname{gcd}(a, b c)$ is 3 , not 9 .
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(2380,391)$. Show your work.

Solution:

$2380-391 \times 6=2380-2346=34$
$391-34 \times 11=391-374=17$
$34-17 \times 2=0$
So the GCD is 17 .
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p, q, and k, if $p \equiv q(\bmod k)$, then $p^{2} \equiv q^{2}(\bmod k)$
true

false \square
$2 \mid-4$
true $\quad \sqrt{ }$ false \square

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For any positive integers p and $q, p \equiv q(\bmod 1)$.
Solution: This is true. $p \equiv q(\bmod 1)$ is equivalent to $p-q=n \times 1=n$ for some integer n. But we can always find an integer that will make this equation balance!
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(7917,357)$. Show your work.

Solution:

$7917-22 \times 357=63$
$357-5 \times 63=42$
$63-42=21$
$42-2 \times 21=0$
So the GCD is 21 .
3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive integers and $r=\operatorname{remainder}(a, b)$, then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$

$-2 \equiv 2(\bmod 4) \quad$ true $\quad \sqrt{ } \quad$ false \square

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is false, or give a concrete example showing that it is not.

There is an integer n such that $n \equiv 5(\bmod 6)$ and $n \equiv 6(\bmod 7)$?
Solution: This is true. Consider $n=41.41 \equiv 5(\bmod 6)$ and $41 \equiv 6(\bmod 7)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1224,850)$. Show your work.

Solution:

$1224-850=374$
$850-374 \times 2=850-748=102$
$374-102 \times 3=374-306=68$
$102-68=34$
$68-34 \times 2=0$
So the GCD is 34 .
3. (4 points) Check the (single) box that best characterizes each item.

Two positive integers p and q are relatively prime if and only if $\operatorname{gcd}(p, q)=1$.
true $\quad \boxed{\sqrt{ }}$ false \square
$0 \mid 0$

false \square

