Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b c)=1$, then $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(a, c)=1$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1568,546)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p and q,
if $\operatorname{lcm}(p, q)=p q$, then p and q are relatively prime.
true \square false \square

[^0] false \square

Name:
NetID:
Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and $c, \operatorname{gcd}(c a, c b)=c \cdot \operatorname{gcd}(a, b)$
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(2015,837)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.
$\operatorname{gcd}(0,0) \quad 0 \quad \square \quad \mathrm{k} \quad \square \quad$ undefined $\quad \square$

$$
25 \equiv 4(\bmod 7)
$$

true \square false \square

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any positive integer $k,(k-1)^{2} \equiv 1(\bmod k)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1183,351)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive and $r=$ remainder (a, b), then $\operatorname{gcd}(b, r)=\operatorname{gcd}(b, a)$
true \square false \square

false

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b)=1$ and $\operatorname{gcd}(b, c)=1$, then $\operatorname{gcd}(a, c)=1$.
2. (6 points) Write pseudocode (iterative or recursive) for a function $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ that implements the Euclidean algorithm. Assume both inputs are positive.
3. (4 points) Check the (single) box that best characterizes each item.
$\operatorname{gcd}(p, q)=\frac{p q}{\operatorname{lcm}(p, q)}$
(p and q positive integers)
$-7 \equiv 13(\bmod 6)$
always \square sometimes $\quad \square$ never \square true \square false \square

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

For any positive integers a, b, and c, if $a \mid b c$, then $a \mid b$ or $a \mid c$
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1702,1221)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive integers
and $r=\operatorname{remainder}(a, b)$,
then $\operatorname{gcd}(b, r)=\operatorname{gcd}(r, a)$
true \square false \square
$29 \equiv 2(\bmod 9)$ true \square false

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if $\operatorname{gcd}(a, b)=n$ and $\operatorname{gcd}(a, c)=p$, then $\operatorname{gcd}(a, b c)=n p$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(2380,391)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

For any positive integers p, q, and k, if $p \equiv q(\bmod k)$, then $p^{2} \equiv q^{2}(\bmod k)$
true \square false

true \square false \square

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For any positive integers p and $q, p \equiv q(\bmod 1)$.
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(7917,357)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

If a and b are positive integers
and $r=\operatorname{remainder}(a, b)$,
then $\operatorname{gcd}(a, b)=\operatorname{gcd}(r, a)$
true \square false \square
$-2 \equiv 2(\bmod 4)$
true \square false \square

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Is the following claim true? Informally explain why it is false, or give a concrete example showing that it is not.

There is an integer n such that $n \equiv 5(\bmod 6)$ and $n \equiv 6(\bmod 7)$?
2. (6 points) Use the Euclidean algorithm to compute $\operatorname{gcd}(1224,850)$. Show your work.
3. (4 points) Check the (single) box that best characterizes each item.

Two positive integers p and q are relatively prime if and only if $\operatorname{gcd}(p, q)=1$.
true \square
false \square
$0 \mid 0$

false \square

[^0]: true

