| Name: | | | | | | | | | | | | | |--|--|--|------------------------|----------------------------|------------------------------|----------------|-------------|---------------------|--------|------------------|--|---------------| | NetID: | | | _ | Le | cture | e : | A | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | $,4,8,10\},\{0,6\},$ a partition of \mathbb{Z} | $\{1, 5, 7, 11\},\$ | {3,9 | $\},\emptyset\}$ | proper | | nat ar | e sati: | | | | | | (7 points) Suppose suppose that $A_1 \cap$ why not. Solution: P true even when so $A_3 = \{3, 4\}$. Then | $A_2 \cap \ldots \cap A_n =$ is not necessariome pairs of (dis | \emptyset and $A_1 \cup$ ly a partitio stinct) subse | $A_2 \cup$ n of ets ov | $ \cup A$ $A. The$ verlap. | $a_n = A$. e issue For ex | Is P is that | a par A_1 | tition $\cap A_2$ (| of A | ? Exp $\cap A_n$ | $\begin{array}{c} \text{plain} \\ = \emptyset \end{array}$ | why or can be | | (2 points) Check to If $f: \mathbb{R} \to \mathbb{P}(\mathbb{Z})$ then $f(17)$ is |) an i | that best characteristics that the set of th | | | set of i | nteger | - | / | uno | define | d | | | Name: | | | | | | | | | | | | | |---|---|------------------------------|-------|------------|--------------------|-----------|--------|-----------|--------|--------|--------|---------| | NetID: | | | | Lecture: A | | | | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (- / | uppose that A is state the condition | | | | | | | A. 1 | Using | gprec | ise la | nguage | | Solution: P of P . | cannot contain the | he empty set | . Eve | ery elei | ment o | f A m | ıst be | long | to ex | actly | one e | element | | | ondition is frequence lement of P , and | · - | | - | | | | , | very e | eleme | nt of | A must | | $(2 \text{ points}) \{\{$ | $\{p,q\} : p \in \mathbb{Z}^+, q$ | $\in \mathbb{Z}^+$, and p | pq = | 6} = | | | | | | | | | | Solution: { | $\{1,6\},\{2,3\}\}$ | | | | | | | | | | | | | (6 points) Ch | eck the (single) b | ox that best | char | acteriz | es each | item. | $\{\{a,b\},c\}=\{$ | $\{a,b,c\}$ | tru | e [| | false | e 🗸 | ′ | | | | | | | If $f: \mathbb{N} \to \mathbb{P}(0)$ then $f(3)$ is | &) | tional ver set | | a one or | set of 1
more 1 | | - | $\sqrt{}$ | ur | ndefin | ied | | | $\binom{k}{k-1}$ | 1 | 2 | k-1 | | k | $\sqrt{}$ | un | defin | ed [| | | | | Name: | | | | | | | | | | | | | |---|--|------------------------------|--------------|--------------|----------|----------|--------|------|------------|-------|-------------|-----------| | NetID: | | | Lecture: A E | | | | | | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | Graph G is at rig V is the set of no | | of edges. | (| e | | (c) | (g) | | (h) | n | | | | Let $M:(V,\mathbb{N}) \to$
Let $P(x) = \{M(x) \in \mathbb{N} \mid x \in \mathbb{N} \}$ | | $M(x,n) = \{$ | $y \in V$ | the | re is a | path o | f leng | th n | from | x to | <i>y</i> }. | | | (3 points) $M($ | (c, 2) = | | | | | | | | | | | | | Solution: M | $I(c,2) = \{b, e, n,$ | h, k } | | | | | | | | | | | | (3 points) Is I | $P(c)$ a partition of et $oxedsymbol{igwedge}$ N | of V ? Check of Partial Ov | | | | erties (| | | tisfied | ł. | | | | (7 points) Le X define its image Informally explain | | $= \{f(s) \in Y$ | $Z \mid s$ | $\in S$ }. | Is it th | ne case | that | f(A) | $)\cap f($ | (B) = | = f(A) | | | Solution: T Suppose that $A =$ | This is false. Let $a = \{a\}$ and $B = \{a\}$ | | | | | | | | | | | $x \in X$ | | (2 points) Che | eck the (single) b | oox that best | chara | acteriz | es each | item. | | | | | | | | ${4,5,6} \cap {6,}$ | 7} 6 | [] | i} | \checkmark | {{6}}} | Name: | | | | | | | | | | | | | | |--|--|-------------------------------------|---------------------|------------|-----------------------|---------------------|---------|---------|------------------|--------|------------------|----------------|---| | NetID: | | | | Lecture: A | | | | | | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | (7 points) Su $f(x) = m$. Then your answer. | appose that $f: A$ a let $P = \{T(m) \mid$ | | | | | | | | | . , | - | | | | | T(m) is the set of etly one set $T(m)$ | | | | | | | | tly or | ne ima | age in | n <i>B</i> . S | 1 | | However, P w | rill contain the en | npty set if f | is not | onto. | So P | is a pa | artitic | on if a | and or | nly if | f is | onto. | | | (2 points) $\{p\}$ | $+q^2 \mid p \in \mathbb{Z}, q$ | $\in \mathbb{Z}, \ 1 \leq p \leq$ | $\leq 2 \text{ an}$ | nd 1 ≤ | $q \le 3$ | } = | | | | | | | | | Solution: $\{2,$ | $,3,5,6,10,11\}$ | | | | | | | | | | | | | | (6 points) Che | eck the (single) b | ox that best | chara | cterize | es each | item. | | | | | | | | | $\mathbb{P}(A)\cap\mathbb{P}(B)$ = | = Ø | always | 5 | someti | mes | | ne | ver | \checkmark | | | | | | Set B is a part set A . Then | ition of a finite | $ B \le 2^{ A }$ $ B = 2^{ A }$ | | I | $ B \le B \le A $ | $\leq A $ $ A+1 $ | | | | | | | | | Pascal's identhat $\binom{n}{k}$ is equ | · / | $\binom{n-1}{k} + \binom{n-1}{k-1}$ | | | $\binom{n-1}{k}$ + | $-\binom{n-1}{k+1}$ | |] | $\binom{n-1}{k}$ | ·) + (| $\binom{n-2}{k}$ | | | | Name: | | | | | | | | | | | | | |---|---|---|-------------------------|---------------|---------|-------------------|-------|--------|------|--------------------|-------|-------| | NetID: | | | | Lecture: A | | | | | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | Solution: Al (3 points) Is T | cribe (at a high l l the real numbe a partition of \mathbb{R} | evel) the electric whose flowers. Check the | ment
or is '
part | s of $f($ 7. | 7): | ies tha | t are | satisf | ied. | 1 | | | | No Empty set (7 points) Det that $k p$. Compare | fine $f: \mathbb{Z} imes \mathbb{Z}^+$ - | | f(x, k) | $(x) = \{y\}$ | | Cover $x = y$ | | | ome | $n \in \mathbb{Z}$ | Z}. S | uppos | | Solution: $f($ of p must also different of several equivale | - | of k , but not | | | | | | | | | | | | (2 points) Che | ck the (single) be | ox that best | chara | acterize | es each | item. | | | | | | | | $\mathbb{P}(\emptyset)$ | Ø | {∅} | {{ | Ø}} [| | $\{\emptyset, \{$ | Ø}} | | | | | | | Name: | | | | | | | | | | | | | |---|---|--------------|------|------------|----------------------|------------|------|--------|-------|---------|--------|---------------| | NetID: | | | - | Lecture: A | | | | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (7 points) Let Express a in term | $f: \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$
as of b and c . Bri | | | | $o \in \mathbb{Z}^+$ | $: n p\}.$ | Supp | pose t | hat , | f(a) = | = f(b) | $\cap f(c)$. | | Solution: Example $f(a)$ must contain $a = lcm(b, c)$. | Every element of
n all numbers tha | - ' ' | | | | | | | | | | | | $(2 \text{ points}) \{\{\}\}$ | $p\} \mid p \in \{2, 3, 4\}$ | } } = | | | | | | | | | | | | Solution: $\{\cdot\}$ | $\{2\}, \{3\}, \{4\}\}$ | | | | | | | | | | | | | (6 points) Che | eck the (single) b | ox that best | char | acterize | es each | item. | | | | | | | | $ \{A \subseteq \mathbb{Z}_4 : A $ | $A $ is even $\} $ | 1 | 6 | | 7 | | 8 | | | infinit | se [| | | There is a se $ \mathbb{P}(A) \leq 2$. | t A such that | true v | / | false | | | | | | | | | | $\binom{n}{1}$ | -1 0 | 1 | | 2 | | n | | / | unc | lefined | l | | | Name: | | | | | | | | | | | | | |--|--|--------------------------------------|-------|------------|-----------------|-----------------|--------------|---------|----------|-------|-----------|-----------| | NetID: | | | | Le | ctur | e: | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | Suppose that $A = y$ is a factor of x | | | ıncti | on F : | $A \rightarrow$ | $\mathbb{P}(A)$ | and a | set S | by . | F(x) | $= \{y$ | $i \in A$ | | (3 points) $S =$ | : | | | | | | | | | | | | | Solution: $\{\{$ | $\{2\}, \{3\}, \{5\}, \{13\}$ | }, {17}}. | | | | | | | | | | | | (3 points) Is S | a partition of A | ? Check the | part | ition p | ropert | ies tha | t are | satisfi | ed. | | | | | No Empty se | t 🗸 N | o Partial Ov | erlap | | | Cover | rs bas | e set | | | | | | (7 points) Let X define its image Informally explain | | $= \{ f(s) \in Y$ | s | $\in S$ }. | Is it t | he cas | e that | f(A) | $\cup f$ | (B) = | = f(A) | | | Solution: T | his is true. | | | | | | | | | | | | | y is in $f(A \cup A)$ the image of a val | B) if and only if lue in A or y is t | | | | | | | | | | ly wh | en y is | | (2 points) Che | eck the (single) b | ox that best | char | acteriz | es eacl | n item. | | | | | | | | A partition of | a set A contains | $\emptyset \qquad \qquad \text{alw}$ | ays | | son | netime | es | | neve | er | $\sqrt{}$ | | | | | | | | | | | | | | | | | Name: | | | | | | | | | | | | | |---|---|----------------------|--------|------------|----------|-----------|----------|---------|----------|------------|--------|-----------------------| | NetID: | | | _ | Lecture: A | | | | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (7 points) Given | ve an example of | a partition | P of | N whe | re the s | set P | is infii | nite. I | Be sp | ecific | | | | Solution: Surface Then P is a partition | ippose that each tion of \mathbb{N} and P | | ber is | s in its o | own pa | rtition | set. | Γhat i | is P = | $=\{\{x\}$ | :} : | $x \in \mathbb{N}\}.$ | | (2 points) $\{pq\}$ | $q \mid p \in \mathbb{N}, \ q \in \mathbb{N}$ | $\emptyset, \ p+q=6$ | } = | | | | | | | | | | | Solution: $\{0,$ | 5, 8, 9 | | | | | | | | | | | | | (6 points) Che | eck the (single) b | ox that best | char | acteriz | es each | item. | | | | | | | | $\mathbb{P}(A) \cup \mathbb{P}(B) =$ | $=\mathbb{P}(A\cup B)$ | always | | someti | mes | $\sqrt{}$ | nev | ver [| | | | | | {∅} | 0 | $1 \sqrt{}$ | 2 | | 3 | | 4 | | ur | ıdefin | ed [| | | $\{4,5\} \cap \{6,7\}$ | Ø | √ {Ø | Ø} [| | nothi | ng | | und | lefine | d [| | |