Name:
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Let $f: \mathbb{Z}_{12} \rightarrow \mathbb{P}\left(\mathbb{Z}_{12}\right)$ be defined by $f(x)=\left\{y \in \mathbb{Z}_{12} \mid y^{2}=x\right\}$. Let $S=\left\{f(x) \mid x \in \mathbb{Z}_{12}\right\}$.
(3 points) $S=$
Solution: $\{\{2,4,8,10\},\{0,6\},\{1,5,7,11\},\{3,9\}, \emptyset\}$
(3 points) Is S a partition of \mathbb{Z}_{12} ? Check the partition properties that are satisfied.
$\begin{array}{llll}\text { No Empty set } \\ \square & \\ \square\end{array}$
(7 points) Suppose that $A_{1}, A_{2}, \ldots, A_{n}$ are non-empty subsets of A, and let $P=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$. Also suppose that $A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\emptyset$ and $A_{1} \cup A_{2} \cup \ldots \cup A_{n}=A$. Is P a partition of A ? Explain why or why not.

Solution: P is not necessarily a partition of A. The issue is that $A_{1} \cap A_{2} \cap \ldots \cap A_{n}=\emptyset$ can be true even when some pairs of (distinct) subsets overlap. For example, $A_{1}=\{1,2\}, A_{2}=\{2,3\}$, and $A_{3}=\{3,4\}$. Then $A_{1} \cap A_{2} \cap A_{3}=\emptyset$ but A_{1} and A_{2} intersect.
(2 points) Check the (single) box that best characterizes each item.

If $f: \mathbb{R} \rightarrow \mathbb{P}(\mathbb{Z})$ then $f(17)$ is
an integer
a power set

undefined \square

Name:

NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(7 points) Suppose that A is a set and P is a collection of subsets of A. Using precise language and/or notation, state the conditions P must satisfy to be a partition of A.

Solution: P cannot contain the empty set. Every element of A must belong to exactly one element of P.

The second condition is frequently split into two sepaate conditions. That is, every element of A must belong some to element of P, and two distinct elements of P cannot overlap.
(2 points) $\left\{\{p, q\}: p \in \mathbb{Z}^{+}, q \in \mathbb{Z}^{+}\right.$, and $\left.p q=6\right\}=$
Solution: $\{\{1,6\},\{2,3\}\}$
(6 points) Check the (single) box that best characterizes each item.
$\{\{a, b\}, c\}=\{a, b, c\}$

If $f: \mathbb{N} \rightarrow \mathbb{P}(\mathbb{Q})$
then $f(3)$ is
a rational
a power set \square

undefined
undefined \square

Name: \qquad
\qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

Graph G is at right.
V is the set of nodes. E is the set of edges.

Let $M:(V, \mathbb{N}) \rightarrow \mathbb{P}(V)$ such that $M(x, n)=\{y \in V \mid$ there is a path of length n from x to $y\}$.
Let $P(x)=\{M(x, n) \mid n \in \mathbb{N}\}$.
$(3$ points) $M(c, 2)=$
Solution: $\quad M(c, 2)=\{b, e, n, h, k\}$
(3 points) Is $P(c)$ a partition of V ? Check the partition properties that are satisfied.
No Empty set \square No Partial Overlap \square Covers base set $\square \sqrt{ }$
(7 points) Let $f: X \rightarrow Y$ be any function, and let A and B be subsets of X. For any subset S of X define its image $f(S)$ by $f(S)=\{f(s) \in Y \mid s \in S\}$. Is it the case that $f(A) \cap f(B)=f(A \cap B)$? Informally explain why this is true or give a concrete counter-example showing why it is not.

Solution: This is false. Let $X=\{a, b\}$ and $Y=\{c\}$. Define $f: X \rightarrow Y$ by $f(x)=c$ for all $x \in X$. Suppose that $A=\{a\}$ and $B=\{b\}$. Then $A \cap B=\emptyset, \operatorname{sof}(A \cap B)=\emptyset$. But $f(A) \cap f(B)=\{c\}$
(2 points) Check the (single) box that best characterizes each item.

$$
\{4,5,6\} \cap\{6,7\}
$$

$6 \square$
$\{6\} \quad \sqrt{ }$
$\{\{6\}\} \square$

Name:

\qquad

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(7 points) Suppose that $f: A \rightarrow B$ is a function. Let's define $T: B \rightarrow \mathbb{P}(A)$ by $T(m)=\{x \in A \mid$ $f(x)=m\}$. Then let $P=\{T(m) \mid m \in B\}$. Under what conditions is P a partition of A ? Briefly justify your answer.

Solution: $T(m)$ is the set of pre-images of m. Every element $x \in A$ has exactly one image in B. So it belongs to exactly one set $T(m)$. That covers two of the partition properties.

However, P will contain the empty set if f is not onto. So P is a partition if and only if f is onto.
(2 points) $\left\{p+q^{2} \mid p \in \mathbb{Z}, q \in \mathbb{Z}, 1 \leq p \leq 2\right.$ and $\left.1 \leq q \leq 3\right\}=$
Solution: $\{2,3,5,6,10,11\}$
(6 points) Check the (single) box that best characterizes each item.
$\mathbb{P}(A) \cap \mathbb{P}(B)=\emptyset$

Set B is a partition of a finite set A. Then

$$
\begin{array}{rlr}
|B| \leq 2^{|A|} & \square & |B| \leq|A| \\
|B|=2^{|A|} & \square & \boxed{V} \\
\hline & B|\leq|A+1| & \square
\end{array}
$$

Pascal's identity states that $\binom{n}{k}$ is equal to

$$
\binom{n-1}{k}+\binom{n-1}{k-1} \quad \square \quad\binom{n-1}{k}+\binom{n-1}{k+1} \quad \square \quad\binom{n-1}{k}+\binom{n-2}{k} \quad \square
$$

Name:
NetID:
Lecture: A B
Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$
Let $f: \mathbb{R} \rightarrow \mathbb{P}(\mathbb{R})$ such that $f(x)=\{p \in \mathbb{R} \mid\lfloor x\rfloor=\lfloor p\rfloor\}$. Let $T=\{f(x) \mid x \in \mathbb{R}\}$.
(3 points) Describe (at a high level) the elements of $f(7)$:
Solution: All the real numbers whose floor is 7 .
(3 points) Is T a partition of \mathbb{R} ? Check the partition properties that are satisfied.
$\begin{array}{lllll}\text { No Empty set } \\ \boxed{ } 1 & \text { No Partial Overlap } \\ \boxed{ } 1 & \text { Covers base set } \\ \boxed{V}\end{array}$
(7 points) Define $f: \mathbb{Z} \times \mathbb{Z}^{+} \rightarrow \mathbb{P}(\mathbb{Z})$ by $f(x, k)=\{y \in \mathbb{Z}: x=y+k n$ for some $n \in \mathbb{Z}\}$. Suppose that $k \mid p$. Compare $f(r, k)$ and $f(r, p)$. Justify your answer.

Solution: $\quad f(r, p)$ is a subset of $f(r, k)$. Because k divides p, two numbers that differ by a multiple of p must also differ by a multiple of k, but not vice versa. So each equivalence class $\bmod k$ is the union of several equivalence classes $\bmod p$.
(2 points) Check the (single) box that best characterizes each item.

$$
\mathbb{P}(\emptyset)
$$

$$
\emptyset \quad \square
$$

$\{\emptyset\} \quad \sqrt{ }$
$\{\{\emptyset\}\} \square$
$\{\emptyset,\{\emptyset\}\} \quad \square$

Name:

\qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(7 points) Let $f: \mathbb{Z}^{+} \rightarrow \mathbb{P}\left(\mathbb{Z}^{+}\right)$be defined by $f(n)=\left\{p \in \mathbb{Z}^{+}: n \mid p\right\}$. Suppose that $f(a)=f(b) \cap f(c)$. Express a in terms of b and c. Briefly justify your answer.

Solution: Every element of $f(b)$ contains all multiples of b and $f(c)$ contains multiples of c. So $f(a)$ must contain all numbers that are multiples of both b and $c . a$ is the smallest element of $f(a)$. So $a=\operatorname{lcm}(b, c)$.
(2 points) $\{\{p\} \mid p \in\{2,3,4\}\}=$
Solution: $\{\{2\},\{3\},\{4\}\}$
(6 points) Check the (single) box that best characterizes each item.
$\mid\left\{A \subseteq \mathbb{Z}_{4}:|A|\right.$ is even $\} \mid$

6 \square 7 \square
$8 \longdiv { \sqrt { } }$ infinite \square

There is a set A such that $|\mathbb{P}(A)| \leq 2$.
true

false \square
$\binom{n}{1}$
-1

$0 \quad \square$
1

n

undefined \square

Name:
NetID:

Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$
Suppose that $A=\{2,3,5,13,17\}$. Define a function $F: A \rightarrow \mathbb{P}(A)$ and a set S by $F(x)=\{y \in A \mid$ y is a factor of $x\} \quad S=\{F(x) \mid x \in A\}$
(3 points) $S=$
Solution: $\{\{2\},\{3\},\{5\},\{13\},\{17\}\}$.
(3 points) Is S a partition of A ? Check the partition properties that are satisfied.
$\begin{array}{lllll}\text { No Empty set } \\ \sqrt{ } \quad \text { No Partial Overlap } \quad \sqrt{ } & \text { Covers base set } \\ \end{array}$
(7 points) Let $f: X \rightarrow Y$ be any function, and let A and B be subsets of X. For any subset S of X define its image $f(S)$ by $f(S)=\{f(s) \in Y \mid s \in S\}$. Is it the case that $f(A) \cup f(B)=f(A \cup B)$? Informally explain why this is true or give a concrete counter-example showing why it is not.

Solution: This is true.
y is in $f(A \cup B)$ if and only if y is the image of a value in $A \cup B$. But this is true exactly when y is the image of a value in A or y is the image of a value in B. That is y is in $f(A) \cup f(B)$.
(2 points) Check the (single) box that best characterizes each item.

A partition of a set A contains $\emptyset \quad$ always \square sometimes \square never $\square \sqrt{ }$

Name:

\qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(7 points) Give an example of a partition P of \mathbb{N} where the set P is infinite. Be specific.
Solution: Suppose that each natural number is in its own partition set. That is $P=\{\{x\} \mid x \in \mathbb{N}\}$. Then P is a partition of \mathbb{N} and P is infinite.
(2 points) $\{p q \mid p \in \mathbb{N}, q \in \mathbb{N}, p+q=6\}=$
Solution: $\{0,5,8,9\}$
(6 points) Check the (single) box that best characterizes each item.

$\{4,5\} \cap\{6,7\} \quad \emptyset \quad \boxed{\sqrt{ }} \quad\{\emptyset\} \quad \square$ nothing \square undefined \square

