Name:												
NetID:			_	\mathbf{Le}	cture	:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Let $f : \mathbb{Z}_{12} \to \mathbb{P}(\mathbb{Z})$ (3 points) $S =$	Z ₁₂) be defined by	$f(x) = \{y\}$	$\in \mathbb{Z}_{12}$	$ y^{2} =$	<i>x</i> }. L€	et $S =$	${f(x)}$		\mathbb{Z}_{12}	}.		
(Write elemen	ts of \mathbb{Z}_{12} as plain	integers, w	ithout	brack	ets.)							
(3 points) Is S	' a partition of \mathbb{Z}	$_{12}$? Check t	he par	tition	proper	ties th	at are	satis	sfied.			
No Empty se	t No	Partial Ov	erlap		(Covers	base :	set				

(7 points) Suppose that A_1, A_2, \ldots, A_n are non-empty subsets of A, and let $P = \{A_1, A_2, \ldots, A_n\}$. Also suppose that $A_1 \cap A_2 \cap \ldots \cap A_n = \emptyset$ and $A_1 \cup A_2 \cup \ldots \cup A_n = A$. Is P a partition of A? Explain why or why not.

Name:												
NetID:				Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(7 points) Suppose that A is a set and P is a collection of subsets of A. Using precise language and/or notation, state the conditions P must satisfy to be a partition of A.

(2 points) $\{\{p,q\} : p \in \mathbb{Z}^+, q \in \mathbb{Z}^+, \text{ and } pq = 6\} =$

CS 173, Spring 19

Examlet 12, white

(7 points) Let $f : X \to Y$ be any function, and let A and B be subsets of X. For any subset S of X define its image f(S) by $f(S) = \{f(s) \in Y \mid s \in S\}$. Is it the case that $f(A) \cap f(B) = f(A \cap B)$? Informally explain why this is true or give a concrete counter-example showing why it is not.

(2 points) Check the (single) box that best characterizes each item.

Name:												
NetID:				Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(7 points) Suppose that $f : A \to B$ is a function. Let's define $T : B \to \mathbb{P}(A)$ by $T(m) = \{x \in A \mid f(x) = m\}$. Then let $P = \{T(m) \mid m \in B\}$. Under what conditions is P a partition of A? Briefly justify your answer.

(2 points)
$$\{p+q^2 \mid p \in \mathbb{Z}, q \in \mathbb{Z}, 1 \le p \le 2 \text{ and } 1 \le q \le 3\} =$$

Name:													
NetID:			_	Le	ecture	В	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6	
Let $f : \mathbb{R} \to \mathbb{P}(\mathbb{R})$ (3 points) Des	such that $f(x)$ = acribe (at a high	$= \{ p \in \mathbb{R} \mid \lfloor z \\ \text{level} \} \text{ the ele}$	$x \rfloor = \lfloor$ ements	$\lfloor p \rfloor$ }. I s of $f($	Let T = 7):	= { <i>f</i> (<i>x</i>) x €	∃ ℝ}.					
(3 points) Is 7] a partition of $\mathbb R$? Check the	e parti	ition p	roperti	ies tha	t are	satisf	ìed.				
No Empty se	t No	o Partial Ov	erlap		(Covers	base	set					
(7 points) De	efine $f: \mathbb{Z} \times \mathbb{Z}^+$	$ ightarrow \mathbb{P}(\mathbb{Z})$ by .	f(x, k	$() = \{y\}$	$u \in \mathbb{Z}$:	x = y	u + km	i for s	ome	$n \in \mathbb{Z}$	Z}. S	uppo	ose

that k|p. Compare f(r,k) and f(r,p). Justify your answer.

Name:												
NetID:			_	Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(7 points) Let $f : \mathbb{Z}^+ \to \mathbb{P}(\mathbb{Z}^+)$ be defined by $f(n) = \{p \in \mathbb{Z}^+ : n | p\}$. Suppose that $f(a) = f(b) \cap f(c)$. Express a in terms of b and c. Briefly justify your answer.

(2 points) $\{\{p\} \mid p \in \{2,3,4\}\} =$

Name:												
NetID:				Le	cture	e:	\mathbf{A}	в				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Suppose that $A = y$ is a factor of x (3 points) $S =$	$\{2, 3, 5, 13, 17\}.$ $S = \{F(x)\}$	Define a fu) $ x \in A \}$	unctio	on F :	$A \rightarrow 1$	$\mathbb{P}(A)$:	and a	set S	by	F(x)	= {	$I \in A \mid$

(3 points) Is S a partition of A? Check the partition properties that are satisfied.

No Empty set No Partial Overlap Covers base se
--

(7 points) Let $f: X \to Y$ be any function, and let A and B be subsets of X. For any subset S of X define its image f(S) by $f(S) = \{f(s) \in Y \mid s \in S\}$. Is it the case that $f(A) \cup f(B) = f(A \cup B)$? Informally explain why this is true or give a concrete counter-example showing why it is not.

A partition of a set A contains \emptyset	always	sometimes	never	
	012 tr 01j to			

Name:												
NetID:			-	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(7 points) Give an example of a partition P of \mathbb{N} where the set P is infinite. Be specific.

 $(2 \text{ points}) \ \{pq \ | \ p \in \mathbb{N}, \ q \in \mathbb{N}, \ p+q=6\} =$

