Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ (15 points) Check the (single) box that best characterizes each item.

Algorithm A takes $\log _{2} n$ time. On one input, A takes x time. How long
$x+1 \quad \square$
$2 x \quad \square$

$x^{2} \quad \square$ will it take if I double the input size?

The running time of binary search is $O(n \log n)$.
true \square false \square

For a problem to satisfy the definition of NP, a "yes" answer must have a succinct justification.
true \square false \square

Deciding whether an input logic expression be made true by appropriate choice of input values.

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

 (15 points) Check the (single) box that best characterizes each item.Karatsuba's integer multiplication

algorithm

The running time of merge is recursively defined by $T(1)=d$ and $T(n)=$
$\Theta(\log n)$

$\Theta\left(n^{3}\right)$ | $\Theta(n)$ |
| :--- |
| $\Theta\left(n^{\log _{3} 2}\right)$ |\quad| \square |
| :--- |
| $\Theta(n \log n)$ |
| $\Theta\left(n^{\log _{2} 3}\right)$ |\quad| $\Theta\left(n^{2}\right)$ |
| :--- |
| $\Theta\left(2^{n}\right)$ | | \square |
| :--- |

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ (15 points) Check the (single) box that best characterizes each item.

The running time of merge

$T(1)=d$
$T(n)=T(n-1)+n$

$T(1)=d$
$T(n)=2 T(n / 3)+d$

The solution to the Tower of
Hanoi puzzle with n disks requires $\Theta\left(2^{n}\right)$ steps

$$
\text { true } \quad \square
$$

not known \square

The chromatic number of a graph with n nodes can be found in polynomial time.

not known \square

Name:

\qquad
\qquad

Lecture: A B

Discussion: Thursday Friday $9 \begin{array}{llllllllll} & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

(6 points) Fill in the missing bits of a recursive implementation of Merge, which merges two lists of integers sorted in increasing order. Use the functions first (first element), rest (everything after first element), and and cons (adds number to list).
$\operatorname{Merge}\left(L_{1}, L_{2}\right.$: sorted lists of real numbers)
if (L_{1} is empty and L_{2} is empty) return emptylist
else if $\left(L_{2}\right.$ is empty or $\left.\operatorname{first}\left(L_{1}\right)<=\operatorname{first}\left(L_{2}\right)\right)$
\square
else
\square
(9 points) Check the (single) box that best characterizes each item.

The Towers of Hanoi puzzle requires exponential time. \square
 not known \square

Finding the chromatic number of a graph with n nodes requires $\Theta\left(2^{n}\right)$ time.

Name:
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ (15 points) Check the (single) box that best characterizes each item.

The running time of Karatsuba's algorithm is recursively defined by $T(1)=d$ and $T(n)=$

$$
\begin{array}{ll}
T(1)=d & \Theta(n) \\
T(n)=2 T(n-1)+c & \Theta\left(n^{\log _{3} 2}\right)
\end{array} \quad \begin{array}{ll}
\Theta(n \log n) \\
& \Theta\left(n^{\log _{2} 3}\right)
\end{array} \quad \begin{array}{|ll}
\Theta\left(n^{2}\right) \\
\Theta\left(2^{n}\right)
\end{array} \begin{array}{|l}
\square \\
\Theta\left(n^{3}\right)
\end{array} \begin{array}{|l}
\square \\
\hline
\end{array}
$$

The running time of the Towers of Hanoi solver is recursively defined by $T(1)=d$

$$
\begin{aligned}
2 T(n-1)+c & \square \\
2 T(n / 2)+c & \square
\end{aligned}
$$ and $T(n)=$

$$
\begin{aligned}
2 T(n-1)+c n & \square \\
2 T(n / 2)+c n & \square
\end{aligned}
$$

For a problem to satisfy the definition of co-NP, a "yes" answer must have a succinct justification. true
 false \square

The Towers of Hanoi puzzle can be solved in polynomial time. true \square false \square not known \square

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

 (15 points) Check the (single) box that best characterizes each item.Adding element to start of array (array
 gets longer)

$$
\begin{array}{ll}
T(1)=d & \Theta(n) \\
T(n)=3 T(n / 2)+d & \Theta\left(n^{\log _{3} 2}\right)
\end{array} \quad \begin{array}{ll}
\Theta(n \log n) \\
& \Theta\left(n^{\log _{2} 3}\right)
\end{array} \quad \begin{array}{|ll}
& \square\left(n^{2}\right) \\
\Theta\left(2^{n}\right)
\end{array} \begin{array}{|l}
\square \\
\Theta\left(3^{n}\right)
\end{array} \begin{array}{|l}
\square \\
\hline
\end{array}
$$

$$
\begin{aligned}
& T(1)=c \\
& T(n)=2 T(n / 2)+n^{2} \\
& \begin{array}{ll}
\Theta(n) & \square \\
\Theta\left(n^{\log _{3} 2}\right) & \square
\end{array} \\
& \begin{array}{lr}
\Theta(n \log n) & \square \\
\Theta\left(n^{\log _{2} 3}\right) & \square
\end{array} \\
& \begin{array}{ll}
\Theta\left(n^{2}\right) \\
\Theta\left(2^{n}\right) & \square
\end{array} \\
& \begin{array}{ll}
\Theta\left(n^{3}\right) & \square \\
\Theta\left(3^{n}\right) & \square
\end{array}
\end{aligned}
$$

Problems in class NP require exponential time
true \square false
 not known

The Marker Making problem can be solved in polynomial time.

not known

Name:

\qquad
NetID: \qquad Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

 (15 points) Check the (single) box that best characterizes each item.$T(1)=d$
$T(n)=T(n / 3)+c$

Dividing a linked list in half

The running time of the Towers of Hanoi solver is recursively defined by $T(1)=d$
 and $T(n)=$

Producing all parses for a sentence.

The Travelling Salesman Problem
polynomial \square exponential \square in NP \square polynomial \square exponential \square in NP \square

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$ (15 points) Check the (single) box that best characterizes each item.

Algorithm A takes 2^{n} time. On one input, A takes x time. How long will
$x+2 \quad \square \quad 2 x \quad \square$
$2^{x} \quad \square$
x^{2}
 it take if I add one to the input size?

Problems in class P (as in P vs. NP) require exponential time
true \square false \square not known

The Travelling Salesman problem can be solved in polynomial time.

