Name: \qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
$01 \operatorname{Jump}\left(a_{1}, \ldots, a_{n}\right.$: an array of n positive integers)
02 if $(\mathrm{n}=1)$ return a_{1}
03 else if $(\mathrm{n}=2)$ return $a_{1}+a_{2}$
04 else if $(\mathrm{n}=3)$ return $a_{1}+a_{2}+a_{3}$
05 else
$06 \quad \mathrm{p}=\lfloor n / 3\rfloor$
$07 \quad \mathrm{q}=\lfloor 2 n / 3\rfloor$
$08 \quad \mathrm{rv}=\operatorname{Jump}\left(a_{1}, \ldots, a_{p}\right)+\operatorname{Jump}\left(a_{q+1}, \ldots, a_{n}\right)$
$09 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Jump}\left(a_{p+1}, \ldots, a_{q}\right)$
10 return rv
Dividing an array takes constant time.

1. (5 points) Let $T(n)$ be the running time of Jump. Give a recursive definition of $T(n)$.

Solution:

$T(1)=a$
$T(2)=b$
$T(3)=c$
$T(n)=3 T(n / 3)+d$
2. (3 points) What is the height of the recursion tree for $T(n)$, assuming n is a power of 3 ?

Solution: $\log _{3}(n)-1$
3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: $d 3^{k}$
4. (4 points) What is the big-Theta running time of Jump? Briefly justify your answer.

Solution: The number of leaves is $3^{\log _{3} n-1}=\frac{n}{3}$, which is $\Theta(n)$. The total number of nodes is proportional to the number of leaves. Since each node contains a constant amount of work, the running time is proportional to the number of nodes. So the running time is $\Theta(n)$.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

01 Swing(k,n)
inputs are positive integers
02 if $(n=1)$ return k
03 else if $(n=2)$ return k^{2}
04 else
$05 \quad$ half $=\lfloor n / 2\rfloor$
$06 \quad$ answer $=\operatorname{Swing}(k$, half $)$
$07 \quad$ answer $=$ answer*answer
$08 \quad$ if $(n$ is odd $)$
$09 \quad$ answer $=$ answer $^{*} \mathrm{k}$
10 return answer

1. (5 points) Suppose $T(n)$ is the running time of Swing. Give a recursive definition of $T(n)$.

Solution:
$T(1)=c, T(2)=d$
$T(n)=T(n / 2)+f$
2. (4 points) What is the height of the recursion tree for $T(n)$? (Assume that n is a power of 2.)

Solution: $\log _{2} n-1$
3. (3 points) How many leaves are in the recursion tree for $T(n)$?

Solution: One.
4. (3 points) What is the big-Theta running time of Swing?

Solution: $\Theta(\log n)$

Name: \qquad

Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$
$01 \operatorname{Waltz}\left(a_{1}, a_{2}, \ldots a_{n}\right.$: list of real numbers)
02 if $(\mathrm{n}=1)$ then return 0
03 else if $(\mathrm{n}=2)$ then return $\left|a_{1}-a_{2}\right|$
04 else
$05 \mathrm{~L}=\operatorname{Waltz}\left(a_{2}, a_{3}, \ldots, a_{n}\right)$
$06 \quad \mathrm{R}=\operatorname{Waltz}\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)$
$07 \quad \mathrm{Q}=\left|a_{1}-a_{n}\right|$
08 return $\max (\mathrm{L}, \mathrm{R}, \mathrm{Q})$
Removing the first element of a list takes constant time; removing the last element takes $O(n)$ time.

1. (3 points) Give a succinct English description of what Waltz computes.

Solution: Waltz computes the largest difference between two values in its input list.
2. (4 points) Suppose $T(n)$ is the running time of Waltz. Give a recursive definition of $T(n)$.

Solution: $\quad T(1)=d_{1} \quad T(2)=d_{2}$
$T(n)=2 T(n-1)+c n$
3. (4 points) What is the height of the recursion tree for $T(n)$?

Solution: We hit the base case when $n-k=2$, where k is the level. So the tree has height $n-2$.
4. (4 points) How many leaves are in the recursion tree for $T(n)$?

Solution: 2^{n-2}

Name: \qquad
NetID:
Lecture: A B
Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$
$01 \operatorname{Grind}\left(a_{1}, \ldots, a_{n}\right) \backslash$ input is a sorted array of n integers
02 if $(n=1)$ return a_{1}
03 else
$04 \quad \mathrm{~m}=\left\lfloor\frac{n}{2}\right\rfloor$
$05 \quad$ if $a_{m}>0$
$06 \quad$ return $\operatorname{Grind}\left(a_{1}, \ldots, a_{m}\right) \quad \backslash$ constant time to extract part of array
07 else
08
return $\operatorname{Grind}\left(a_{m+1}, \ldots, a_{n}\right) \quad \backslash \backslash$ constant time to extract part of array

1. (5 points) Suppose that $T(n)$ is the running time of Grind on an input array of length n and assume that n is a power of 2 . Give a recursive definition of $T(n)$.
Solution:
$T(1)=c$
$T(n)=T(n / 2)+d$
2. (4 points) What is the height of the recursion tree for $T(n)$?

Solution: $\log _{2} n$
3. (3 points) How many leaves does this tree have?

Solution: One.
4. (3 points) What is the big-Theta running time of Grind?

Solution: $\Theta(\log n)$

Name: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

02 if $\left(n=2\right.$ and $\left.a_{0}>a_{1}\right)$
$03 \operatorname{swap}\left(a_{0}, a_{1}\right) \quad \backslash \backslash$ interchange the values at positions 0 and 1 in the array
04
05
06
07
08

10
else if $(n>2)$
$\mathrm{p}=\left\lfloor\frac{n}{4}\right\rfloor$
$\mathrm{q}=\left\lfloor\frac{n}{2}\right\rfloor$
$\mathrm{r}=\mathrm{p}+\mathrm{q}$
Weave $\left(a_{0}, \ldots, a_{q}\right) \quad \backslash \backslash$ constant time to make smaller array
Weave $\left(a_{q+1}, \ldots, a_{n-1}\right) \quad \backslash \backslash$ constant time to make smaller array
Weave $\left(a_{p}, \ldots, a_{r}\right) \quad \backslash \backslash$ constant time to make smaller array

1. (5 points) Suppose that $T(n)$ is the running time of Weave on an input array of length n. Give a recursive definition of $T(n)$.

Solution:

$T(2)=d$
$T(n)=3 T(n / 2)+f$
2. (4 points) What is the height of the recursion tree for $T(n)$, assuming n is a power of 2 ?

Solution: $\log _{2} n-1$
3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: $f \cdot 3^{k}$
4. (3 points) How many leaves are in the recursion tree for $T(n)$? (Simplify your answer.)

Solution: $\quad 3^{\log _{2} n-1}=1 / 3\left(3^{\log _{2} n}\right)=1 / 3\left(3^{\log _{3} n \log _{2} 3}\right)=1 / 3 \cdot n^{\log _{2} 3}$

Name: \qquad
NetID:

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$01 \operatorname{Act}\left(a_{1}, \ldots, a_{n} ; b_{1}, \ldots, b_{n}\right) \backslash$ input is 2 arrays of n integers, n is a power of 2
02
03
04 else

$$
05
$$

06
$07 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Act}\left(a_{1}, \ldots, a_{p}, b_{p+1}, \ldots, b_{n}\right)$
$08 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Act}\left(a_{p+1}, \ldots, a_{n}, b_{p+1}, \ldots, b_{n}\right)$
$09 \quad \mathrm{rv}=\mathrm{rv}+\operatorname{Act}\left(a_{p+1}, \ldots, a_{n}, b_{1}, \ldots, b_{p}\right)$
10 return rv

1. (5 points) Suppose that $T(n)$ is the running time of Act on an input array of length n. Give a recursive definition of $T(n)$. Assume that dividing an array in half takes constant time.

Solution:

$T(1)=c$
$T(n)=4 T(n / 2)+d$
2. (3 points) What is the height of the recursion tree for $T(n)$, assuming n is a power of 2 ?

Solution: $\log _{2} n$
3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4^{k} nodes, each containing n. So the total work is $4^{k} d$
4. (4 points) What is the big-Theta running time of Act. Briefly justify your answer. Recall that $\sum_{k=0}^{n} a^{k}=\frac{a^{n+1}-1}{a-1}$.
Solution: The number of leaves is $4^{\log _{2} n}=4^{\log _{4} n \log _{2} 4}=n^{\log _{2} 4}=n^{2}$ which is $\Theta\left(n^{2}\right)$. The total number of nodes is proportional to the number of leaves (because $\sum_{k=0}^{n} 4^{k}=\frac{4^{n+1}-1}{3}$). Since each node contains a constant amount of work, the running time is proportional to the number of nodes. So the running time is $\Theta\left(n^{2}\right)$.

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
$01 \operatorname{Dig}\left(a_{1}, \ldots, a_{n}\right.$: array of integers)
02 if ($n=1$)
03 if $\left(a_{1}>8\right)$ return true
04 else return false
05 else if $\left(\operatorname{Dig}\left(a_{1}, \ldots, a_{n-1}\right)\right.$ is true and $\operatorname{Dig}\left(a_{2}, \ldots, a_{n}\right)$ is true $)$
06 return true
07 else return false

1. (3 points) If Dig returns true, what must be true of the values in the input array?

Solution: The values in the input array must all be greater than 8 .
2. (5 points) Give a recursive definition for $T(n)$, the running time of Dig on an input of length n, assuming it takes constant time to set up the recursive calls in line 05.

Solution:
$T(1)=c$
$T(n)=2 T(n-1)+d$
3. (3 points) What is the height of the recursion tree for $T(n)$?

Solution: $n-1$
4. (4 points) What is the big-theta running time of Dig?

Solution: $\Theta\left(2^{n}\right)$

Name: \qquad
NetID: \qquad Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$01 \operatorname{Swim}\left(a_{1}, \ldots, a_{n}\right) \backslash \backslash$ input is a sorted list of n integers
02 if $(n=1)$ return a_{1}
03 else
$04 \quad \mathrm{~m}=\left\lfloor\frac{n}{2}\right\rfloor$
$05 \quad$ if $a_{m}>0$
06 return $\operatorname{Swim}\left(a_{1}, \ldots, a_{m}\right) \quad \backslash \backslash \mathrm{O}(\mathrm{n})$ time to extract half of list
07 else
08
return $\operatorname{Swim}\left(a_{m+1}, \ldots, a_{n}\right) \quad \backslash \backslash \mathrm{O}(\mathrm{n})$ time to extract half of list

1. (5 points) Suppose that $T(n)$ is the running time of Swim on an input list of length n and assume that n is a power of 2 . Give a recursive definition of $T(n)$.
Solution:
$T(1)=c$
$T(n)=T(n / 2)+d n$
2. (4 points) What is the height of the recursion tree for $T(n)$?

Solution: $\log _{2} n$
3. (3 points) What value is in each node at level k of this tree?

Solution: $d n / 2^{k}$
4. (3 points) What is the big-Theta running time of Swim?

Solution: $\Theta(n)$
[more detail than you need to supply] There is only one node at each level. So the total work is $c+d(n+n / 2+\ldots+2)$. The dominant term of this is proportional to $n \sum_{k=0}^{\log n} 1 / 2^{k}=n\left(2-1 / 2^{\log n}\right)=$ $n(2-1 / n)=2 n-1$.

