CS 173, Spring 19

Examlet 11, colored sheet

Name:												
NetID:	_	Le	ectur									
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
01 Jump(<i>a</i>	a_1,\ldots,a_n : an arra	ay of n posit	ive in	tegers)								
02 if (n =	= 1) return a_1											
03 else if	(n = 2) return a											
04 else if	(n = 3) return a											
05 else	05 else											
06 p =	= n/3											
07 q =	= 2n/3											

- $\begin{array}{ll} 08 & \operatorname{rv} = \operatorname{Jump}(a_1, \dots, a_p) + \operatorname{Jump}(a_{q+1}, \dots, a_n) \\ 09 & \operatorname{rv} = \operatorname{rv} + \operatorname{Jump}(a_{p+1}, \dots, a_q) \end{array}$
- 10 return rv

Dividing an array takes constant time.

- (5 points) Let T(n) be the running time of Jump. Give a recursive definition of T(n).
 Solution:
 - T(1) = a T(2) = b T(3) = cT(n) = 3T(n/3) + d
- 2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 3?
 Solution: log₃(n) − 1
- 3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?
 Solution: d3^k
- 4. (4 points) What is the big-Theta running time of Jump? Briefly justify your answer.

Solution: The number of leaves is $3^{\log_3 n-1} = \frac{n}{3}$, which is $\Theta(n)$. The total number of nodes is proportional to the number of leaves. Since each node contains a constant amount of work, the running time is proportional to the number of nodes. So the running time is $\Theta(n)$.

CS 173, Spring 19

Examlet 11, colored sheet

Name:_____ NetID: В Lecture: Α Thursday 2 3 Discussion: Friday 9 10 11121 4 $\mathbf{5}$ 6 01 Swing(k,n) \setminus inputs are positive integers 02if (n = 1) return k else if (n = 2) return k^2 03 04else half = $\lfloor n/2 \rfloor$ 05answer = Swing(k,half)06 $answer = answer^*answer$ 07if (n is odd)08 09answer = $answer^*k$ 10 return answer

(5 points) Suppose T(n) is the running time of Swing. Give a recursive definition of T(n).
 Solution:

T(1) = c, T(2) = dT(n) = T(n/2) + f

- 2. (4 points) What is the height of the recursion tree for T(n)? (Assume that n is a power of 2.) Solution: $\log_2 n - 1$
- 3. (3 points) How many leaves are in the recursion tree for T(n)?Solution: One.
- 4. (3 points) What is the big-Theta running time of Swing?
 Solution: Θ(log n)

Name:												
NetID:	_	Lecture:			\mathbf{A}	В						
Discussion:	on: Thursday Friday 9 10 11		12	1	2	3	4	5	6			
01 Waltz(a	$a_1, a_2, \ldots a_n$: list of	of real numb	ers)									
02 if (n =	= 1) then return (0										
03 else if												
04 else												
05 L =	Waltz (a_2, a_3, \ldots, a_n)											
06 R =	Waltz (a_1, a_2, \ldots, a_n)											
07 Q =	$ a_1 - a_n $											

08 return $\max(L,R,Q)$

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

- (3 points) Give a succinct English description of what Waltz computes.
 Solution: Waltz computes the largest difference between two values in its input list.
- 2. (4 points) Suppose T(n) is the running time of Waltz. Give a recursive definition of T(n). Solution: $T(1) = d_1$ $T(2) = d_2$ T(n) = 2T(n-1) + cn
- 3. (4 points) What is the height of the recursion tree for T(n)?
 Solution: We hit the base case when n−k = 2, where k is the level. So the tree has height n−2.
- 4. (4 points) How many leaves are in the recursion tree for T(n)?
 Solution: 2ⁿ⁻²

Examlet 11, colored sheet

Name:_____ NetID:_ Lecture: Α Β 3 2 Discussion: Thursday Friday 9 10 11121 4 6 $\mathbf{5}$ 01 Grind (a_1, \ldots, a_n) \\ input is a sorted array of n integers 02 if (n = 1) return a_1 03 else 04 $m = \left\lfloor \frac{n}{2} \right\rfloor$ if $a_m > 0$ 05return $\operatorname{Grind}(a_1, \ldots, a_m) \setminus \operatorname{constant}$ time to extract part of array 06 07else

- 08 return $Grind(a_{m+1}, \ldots, a_n)$ \\ constant time to extract part of array
- 1. (5 points) Suppose that T(n) is the running time of Grind on an input array of length n and assume that n is a power of 2. Give a recursive definition of T(n).

Solution: T(1) = cT(n) = T(n/2) + d

- 2. (4 points) What is the height of the recursion tree for T(n)? Solution: $\log_2 n$
- (3 points) How many leaves does this tree have?
 Solution: One.
- 4. (3 points) What is the big-Theta running time of Grind?
 Solution: Θ(log n)

CS 173, Spring 19

Examlet 11, colored sheet

Name:												
NetID:	-	Lecture:			A	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

01 Weave (a_0, \ldots, a_{n-1}) \\ input is an array of n integers $(n \ge 2)$ 02if $(n = 2 \text{ and } a_0 > a_1)$ swap (a_0, a_1) \\ interchange the values at positions 0 and 1 in the array 03 else if (n > 2)04 $\mathbf{p} = \lfloor \frac{n}{4} \rfloor$ 05 $q = \lfloor \frac{n}{2} \rfloor$ 06 07r = p + qWeave (a_0, \ldots, a_q) \\ constant time to make smaller array 08 Weave $(a_{q+1}, \ldots, a_{n-1})$ \\ constant time to make smaller array 09 Weave (a_p, \ldots, a_r) \\ constant time to make smaller array 10

1. (5 points) Suppose that T(n) is the running time of Weave on an input array of length n. Give a recursive definition of T(n).

Solution:

T(2) = dT(n) = 3T(n/2) + f

- 2. (4 points) What is the height of the recursion tree for T(n), assuming n is a power of 2?
 Solution: log₂ n − 1
- 3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree? Solution: $f \cdot 3^k$
- 4. (3 points) How many leaves are in the recursion tree for T(n)? (Simplify your answer.) Solution: $3^{\log_2 n-1} = 1/3(3^{\log_2 n}) = 1/3(3^{\log_3 n \log_2 3}) = 1/3 \cdot n^{\log_2 3}$

Name: NetID: Lecture: Α В $\mathbf{2}$ 3 **Discussion:** Thursday Friday 9 1011121 5 6 4

```
01 Act(a_1, \ldots, a_n; b_1, \ldots, b_n) \\ input is 2 arrays of n integers, n is a power of 2
02
               if (n = 1)
03
                       return a_1b_1
04
               else
                      p = \frac{n}{2}
05
                       rv = Act(a_1, \ldots, a_p, b_1, \ldots, b_p)
06
                       rv = rv + Act(a_1, \ldots, a_p, b_{p+1}, \ldots, b_n)
07
                      rv = rv + Act(a_{p+1}, \dots, a_n, b_{p+1}, \dots, b_n)
08
                       \operatorname{rv} = \operatorname{rv} + \operatorname{Act}(a_{p+1}, \dots, a_n, b_1, \dots, b_p)
09
10
                       return rv
```

1. (5 points) Suppose that T(n) is the running time of Act on an input array of length n. Give a recursive definition of T(n). Assume that dividing an array in half takes constant time.

```
Solution:
```

T(1) = cT(n) = 4T(n/2) + d

- 2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 2?
 Solution: log₂ n
- 3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree? Solution: There are 4^k nodes, each containing n. So the total work is $4^k d$
- 4. (4 points) What is the big-Theta running time of Act. Briefly justify your answer. Recall that $\sum_{k=0}^{n} a^k = \frac{a^{n+1}-1}{a-1}$.

Solution: The number of leaves is $4^{\log_2 n} = 4^{\log_4 n \log_2 4} = n^{\log_2 4} = n^2$ which is $\Theta(n^2)$. The total number of nodes is proportional to the number of leaves (because $\sum_{k=0}^{n} 4^k = \frac{4^{n+1}-1}{3}$). Since each node contains a constant amount of work, the running time is proportional to the number of nodes. So the running time is $\Theta(n^2)$.

Examlet 11, colored sheet

Name:													
NetID:					Le	ectur	В						
Discussio	on: Th	ursday	Friday	9	10	11	12	1	2	3	4	5	6
01 Dig 02 03	$i (a_1, \dots, a_r)$ if $(n = 1)$ if $(a_1 > 1)$	$_{n}$: array of \dot{a} > 8) return	integers) true										
04 else return false 05 else if $(\text{Dig}(a_1, \ldots, a_{n-1})$ is true and $\text{Dig}(a_2, \ldots, a_n)$ is true) 06 return true 07 else return false													

- (3 points) If Dig returns true, what must be true of the values in the input array?
 Solution: The values in the input array must all be greater than 8.
- 2. (5 points) Give a recursive definition for T(n), the running time of Dig on an input of length n, assuming it takes constant time to set up the recursive calls in line 05.

```
Solution:
```

$$T(1) = c$$

$$T(n) = 2T(n-1) + d$$

- 3. (3 points) What is the height of the recursion tree for T(n)?
 Solution: n − 1
- 4. (4 points) What is the big-theta running time of Dig?
 Solution: Θ(2ⁿ)

Examlet 11, colored sheet

Name:___ NetID: Lecture: Α Β **Discussion:** Thursday Friday 9 10 121 2 3 11 4 5 6 01 Swim (a_1, \ldots, a_n) \\ input is a sorted list of n integers 02if (n = 1) return a_1 03 else 04 $m = \left\lfloor \frac{n}{2} \right\rfloor$ if $a_m > 0$ 05return Swim (a_1, \ldots, a_m) \\ O(n) time to extract half of list 06

- return Swim $(a_{m+1}, \ldots, a_n) \setminus O(n)$ time to extract half of list
- 1. (5 points) Suppose that T(n) is the running time of Swim on an input list of length n and assume that n is a power of 2. Give a recursive definition of T(n).

Solution: T(1) = cT(n) = T(n/2) + dn

else

07

08

- 2. (4 points) What is the height of the recursion tree for T(n)? Solution: $\log_2 n$
- 3. (3 points) What value is in each node at level k of this tree? Solution: $dn/2^k$
- 4. (3 points) What is the big-Theta running time of Swim?

Solution: $\Theta(n)$

[more detail than you need to supply] There is only one node at each level. So the total work is $c+d(n+n/2+\ldots+2)$. The dominant term of this is proportional to $n\sum_{k=0}^{\log n} 1/2^k = n(2-1/2^{\log n}) = n(2-1/n) = 2n-1$.