
CS 173, Spring 19 Examlet 11, colored sheet 1

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Jump(a1, . . . , an: an array of n positive integers)
02 if (n = 1) return a1
03 else if (n = 2) return a1 + a2
04 else if (n = 3) return a1 + a2 + a3
05 else
06 p = ⌊n/3⌋
07 q = ⌊2n/3⌋
08 rv = Jump(a1, . . . , ap) + Jump(aq+1, . . . , an)
09 rv = rv + Jump(ap+1, . . . , aq)
10 return rv

Dividing an array takes constant time.

1. (5 points) Let T (n) be the running time of Jump. Give a recursive definition of T (n).

Solution:

T (1) = a

T (2) = b

T (3) = c

T (n) = 3T (n/3) + d

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 3?

Solution: log3(n)− 1

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: d3k

4. (4 points) What is the big-Theta running time of Jump? Briefly justify your answer.

Solution: The number of leaves is 3log3 n−1 = n

3
, which is Θ(n). The total number of nodes is

proportional to the number of leaves. Since each node contains a constant amount of work, the
running time is proportional to the number of nodes. So the running time is Θ(n).

CS 173, Spring 19 Examlet 11, colored sheet 2

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Swing(k,n) \\ inputs are positive integers
02 if (n = 1) return k
03 else if (n = 2) return k2

04 else
05 half = ⌊n/2⌋
06 answer = Swing(k,half)
07 answer = answer*answer
08 if (n is odd)
09 answer = answer*k
10 return answer

1. (5 points) Suppose T (n) is the running time of Swing. Give a recursive definition of T (n).

Solution:

T (1) = c, T (2) = d

T (n) = T (n/2) + f

2. (4 points) What is the height of the recursion tree for T (n)? (Assume that n is a power of 2.)

Solution: log2 n− 1

3. (3 points) How many leaves are in the recursion tree for T (n)?

Solution: One.

4. (3 points) What is the big-Theta running time of Swing?

Solution: Θ(log n)

CS 173, Spring 19 Examlet 11, colored sheet 3

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Waltz(a1, a2, . . . an: list of real numbers)
02 if (n = 1) then return 0
03 else if (n = 2) then return |a1 − a2|
04 else
05 L = Waltz(a2,a3,. . . ,an)
06 R = Waltz(a1,a2,. . . ,an−1)
07 Q = |a1 − an|
08 return max(L,R,Q)

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) Give a succinct English description of what Waltz computes.

Solution: Waltz computes the largest difference between two values in its input list.

2. (4 points) Suppose T (n) is the running time of Waltz. Give a recursive definition of T (n).

Solution: T (1) = d1 T (2) = d2

T (n) = 2T (n− 1) + cn

3. (4 points) What is the height of the recursion tree for T (n)?

Solution: We hit the base case when n−k = 2, where k is the level. So the tree has height n−2.

4. (4 points) How many leaves are in the recursion tree for T (n)?

Solution: 2n−2

CS 173, Spring 19 Examlet 11, colored sheet 4

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Grind(a1, . . . , an) \\ input is a sorted array of n integers
02 if (n = 1) return a1
03 else
04 m = ⌊n

2
⌋

05 if am > 0
06 return Grind(a1, . . . , am) \\ constant time to extract part of array
07 else
08 return Grind(am+1, . . . , an) \\ constant time to extract part of array

1. (5 points) Suppose that T (n) is the running time of Grind on an input array of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = T (n/2) + d

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) How many leaves does this tree have?

Solution: One.

4. (3 points) What is the big-Theta running time of Grind?

Solution: Θ(log n)

CS 173, Spring 19 Examlet 11, colored sheet 5

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Weave(a0, . . . , an−1)) \\ input is an array of n integers (n ≥ 2)
02 if (n = 2 and a0 > a1)
03 swap(a0, a1) \\ interchange the values at positions 0 and 1 in the array
04 else if (n > 2)
05 p = ⌊n

4
⌋

06 q = ⌊n
2
⌋

07 r = p + q
08 Weave(a0, . . . , aq) \\ constant time to make smaller array
09 Weave(aq+1, . . . , an−1) \\ constant time to make smaller array
10 Weave(ap, . . . , ar) \\ constant time to make smaller array

1. (5 points) Suppose that T (n) is the running time of Weave on an input array of length n. Give a
recursive definition of T (n).

Solution:

T (2) = d

T (n) = 3T (n/2) + f

2. (4 points) What is the height of the recursion tree for T (n), assuming n is a power of 2?

Solution: log2 n− 1

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: f · 3k

4. (3 points) How many leaves are in the recursion tree for T (n)? (Simplify your answer.)

Solution: 3log2 n−1 = 1/3(3log2 n) = 1/3(3log3 n log2 3) = 1/3 · nlog2 3

CS 173, Spring 19 Examlet 11, colored sheet 6

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Act(a1, . . . , an; b1, . . . , bn) \\ input is 2 arrays of n integers, n is a power of 2
02 if (n = 1)
03 return a1b1
04 else
05 p = n

2

06 rv = Act(a1, . . . , ap, b1, . . . , bp)
07 rv = rv + Act(a1, . . . , ap, bp+1, . . . , bn)
08 rv = rv + Act(ap+1, . . . , an, bp+1, . . . , bn)
09 rv = rv + Act(ap+1, . . . , an, b1, . . . , bp)
10 return rv

1. (5 points) Suppose that T (n) is the running time of Act on an input array of length n. Give a
recursive definition of T (n). Assume that dividing an array in half takes constant time.

Solution:

T (1) = c

T (n) = 4T (n/2) + d

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 2?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4k nodes, each containing n. So the total work is 4kd

4. (4 points) What is the big-Theta running time of Act. Briefly justify your answer. Recall that∑n

k=0
ak = an+1

−1

a−1
.

Solution: The number of leaves is 4log2 n = 4log4 n log2 4 = nlog2 4 = n2 which is Θ(n2). The total
number of nodes is proportional to the number of leaves (because

∑n

k=0 4
k = 4n+1

−1

3
). Since each

node contains a constant amount of work, the running time is proportional to the number of nodes.
So the running time is Θ(n2).

CS 173, Spring 19 Examlet 11, colored sheet 7

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Dig (a1, . . . , an: array of integers)
02 if (n = 1)
03 if (a1 > 8) return true
04 else return false
05 else if (Dig(a1, . . . , an−1) is true and Dig(a2, . . . , an) is true)
06 return true
07 else return false

1. (3 points) If Dig returns true, what must be true of the values in the input array?

Solution: The values in the input array must all be greater than 8.

2. (5 points) Give a recursive definition for T (n), the running time of Dig on an input of length n,
assuming it takes constant time to set up the recursive calls in line 05.

Solution:

T (1) = c

T (n) = 2T (n− 1) + d

3. (3 points) What is the height of the recursion tree for T (n)?

Solution: n− 1

4. (4 points) What is the big-theta running time of Dig?

Solution: Θ(2n)

CS 173, Spring 19 Examlet 11, colored sheet 8

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Swim(a1, . . . , an) \\ input is a sorted list of n integers
02 if (n = 1) return a1
03 else
04 m = ⌊n

2
⌋

05 if am > 0
06 return Swim(a1, . . . , am) \\ O(n) time to extract half of list
07 else
08 return Swim(am+1, . . . , an) \\ O(n) time to extract half of list

1. (5 points) Suppose that T (n) is the running time of Swim on an input list of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = T (n/2) + dn

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) What value is in each node at level k of this tree?

Solution: dn/2k

4. (3 points) What is the big-Theta running time of Swim?

Solution: Θ(n)

[more detail than you need to supply] There is only one node at each level. So the total work is
c+d(n+n/2+. . .+2). The dominant term of this is proportional to n

∑logn

k=0
1/2k = n(2−1/2log n) =

n(2− 1/n) = 2n− 1.

