Examlet 11, colored sheet

Name:												
NetID:			-	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
01 Jump(a	a_1, \ldots, a_n : an arra	ay of n posit	ive in	tegers)								
02 if (n =	$= 1$) return a_1											
03 else if	f (n = 2) return a											
04 else if	f (n = 3) return a	$_1 + a_2 + a_3$										
05 else												
06 p =	$= \lfloor n/3 \rfloor$											
07 q =	$= \lfloor 2n/3 \rfloor$											
08 rv	$=$ Jump (a_1,\ldots,a_n)	u_p) + Jump($a_{q+1},$	\ldots, a_n)							
09 rv	$rv = rv + Jump(a_{p+1}, \dots, a_q)$											
10 ret	turn rv											
Dividing on amo	r talva constant f	ima										

Dividing an array takes constant time.

1. (5 points) Let T(n) be the running time of Jump. Give a recursive definition of T(n).

2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 3?

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

4. (4 points) What is the big-Theta running time of Jump? Briefly justify your answer.

Examlet 11, colored sheet

Name:_____ NetID:_ Lecture: Α Β $\mathbf{2}$ 3 Discussion: Thursday Friday 9 10 11121 4 6 $\mathbf{5}$ 01 Swing(k,n) \setminus inputs are positive integers 02 if (n = 1) return k else if (n = 2) return k^2 03 04else half = $\lfloor n/2 \rfloor$ 05answer = Swing(k,half)06 $answer = answer^*answer$ 07if (n is odd)08 09answer = $answer^*k$ 10 return answer

1. (5 points) Suppose T(n) is the running time of Swing. Give a recursive definition of T(n).

2. (4 points) What is the height of the recursion tree for T(n)? (Assume that n is a power of 2.)

3. (3 points) How many leaves are in the recursion tree for T(n)?

4. (3 points) What is the big-Theta running time of Swing?

Examlet 11, colored sheet

Name:												
NetID:				Le	ectur	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
01 Waltz($a_1, a_2, \ldots a_n$: list of	of real numb	ers)									
02 if (n =	= 1) then return (C	,									
03 else if	(n = 2) then ret	urn $ a_1 - a_2 $										
04 else												
05 L =	$L = Waltz(a_2, a_3, \dots, a_n)$											
06 R =	$\mathbf{R} = \text{Waltz}(a_1, a_2, \dots, a_{n-1})$											
07 Q =	$Q = a_1 - a_n $											
08 retu	$\operatorname{rn} \max(L,R,Q)$											

Removing the first element of a list takes constant time; removing the last element takes O(n) time.

1. (3 points) Give a succinct English description of what Waltz computes.

2. (4 points) Suppose T(n) is the running time of Waltz. Give a recursive definition of T(n).

3. (4 points) What is the height of the recursion tree for T(n)?

4. (4 points) How many leaves are in the recursion tree for T(n)?

Examlet 11, colored sheet

Name:_____ NetID: Lecture: Α Β 3 **Discussion:** Thursday 9 10Friday 11121 $\mathbf{2}$ 6 4 $\mathbf{5}$ 01 Grind (a_1, \ldots, a_n) \\ input is a sorted array of n integers 02 if (n = 1) return a_1 03 else 04 $m = \left\lfloor \frac{n}{2} \right\rfloor$ if $a_m > 0$ 05return $Grind(a_1, \ldots, a_m) \setminus Constant$ time to extract part of array 06 07else return $\operatorname{Grind}(a_{m+1},\ldots,a_n) \setminus \operatorname{constant}$ time to extract part of array 08

1. (5 points) Suppose that T(n) is the running time of Grind on an input array of length n and assume that n is a power of 2. Give a recursive definition of T(n).

2. (4 points) What is the height of the recursion tree for T(n)?

3. (3 points) How many leaves does this tree have?

4. (3 points) What is the big-Theta running time of Grind?

Examlet 11, colored sheet

Name:_												
NetID:			Lecture:			e:	\mathbf{A}	В				
Discussio	n: Thursday	Friday	9	10	11	12	1	2	3	4	5	6
01 We	$eave(a_0,\ldots,a_{n-1}))$	input is an	array	of n in	ntegers	$s (n \ge 1)$	2)					
02	if $(n = 2 \text{ and } a_0 >$	$> a_1)$	÷			,	,					
03	$\operatorname{swap}(a_0, a_1)$	$\langle \$ intercha	ange	the val	ues at	positic	$ns \ 0 a$	and 1	in th	ie ari	ay	
04	else if $(n > 2)$											
05	$\mathbf{p} = \lfloor \frac{n}{4} \rfloor$											
06	$\mathbf{q} = \lfloor \frac{\dot{n}}{2} \rfloor$											
07	r = p + q											
08	Weave (a_0, \ldots)	$(a_q) \setminus cc$	onstar	nt time	to ma	ke sma	aller a	rray				
09	Weave $(a_{q+1},$	$\ldots, a_{n-1})$	$(\cos \theta)$	nstant	time to	o make	e smal	ler ai	ray			
10	Weave (a_p, \ldots)	$(a_r) (\ constraints a_r)$	onstar	nt time	to ma	ke sma	aller a	rray				

1. (5 points) Suppose that T(n) is the running time of Weave on an input array of length n. Give a recursive definition of T(n).

2. (4 points) What is the height of the recursion tree for T(n), assuming n is a power of 2?

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

4. (3 points) How many leaves are in the recursion tree for T(n)? (Simplify your answer.)

Examlet 11, colored sheet

Name:___ NetID: Lecture: Α Β **Discussion:** Thursday Friday 9 10121 $\mathbf{2}$ 3 6 11 4 5 01 Act $(a_1, \ldots, a_n; b_1, \ldots, b_n)$ \\ input is 2 arrays of n integers, n is a power of 2 02if (n = 1)03 return a_1b_1 04else $p = \frac{n}{2}$ 05 $rv = Act(a_1, \ldots, a_p, b_1, \ldots, b_p)$ 06 $\operatorname{rv} = \operatorname{rv} + \operatorname{Act}(a_1, \dots, a_p, b_{p+1}, \dots, b_n)$ 07 $rv = rv + Act(a_{p+1}, \dots, a_n, b_{p+1}, \dots, b_n)$ 08 $rv = rv + Act(a_{p+1}, \ldots, a_n, b_1, \ldots, b_p)$ 0910return rv

1. (5 points) Suppose that T(n) is the running time of Act on an input array of length n. Give a recursive definition of T(n). Assume that dividing an array in half takes constant time.

2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 2?

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

4. (4 points) What is the big-Theta running time of Act. Briefly justify your answer. Recall that $\sum_{k=0}^{n} a^k = \frac{a^{n+1}-1}{a-1}$.

Examlet 11, colored sheet

Name:												
NetID:			_	Le	В	}						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
$\begin{array}{c} 01 \text{ Dig } (a_1 \\ 02 & \text{if } (a_2 \\ 02 & \text$	a_1, \ldots, a_n : array of $a_n = 1$	integers)										
03 04 05 else	if $(a_1 > 8)$ return else return false if $(\text{Dig}(a_1, \dots, a_n))$	true _1) is true a	nd Di	$g(a_2,\ldots)$	(\ldots, a_n)	is true)					
06 07 else	return true return false	- /		0(2)	, 10)		/					

1. (3 points) If Dig returns true, what must be true of the values in the input array?

2. (5 points) Give a recursive definition for T(n), the running time of Dig on an input of length n, assuming it takes constant time to set up the recursive calls in line 05.

3. (3 points) What is the height of the recursion tree for T(n)?

4. (4 points) What is the big-theta running time of Dig?

Examlet 11, colored sheet

Name:_____ NetID: Lecture: Α Β 3 **Discussion:** Thursday 9 10Friday 121 $\mathbf{2}$ 6 114 $\mathbf{5}$ 01 Swim (a_1, \ldots, a_n) \\ input is a sorted list of n integers 02 if (n = 1) return a_1 03 else 04 $m = \left\lfloor \frac{n}{2} \right\rfloor$ if $a_m > 0$ 05return Swim (a_1, \ldots, a_m) \\ O(n) time to extract half of list 06 07else return Swim (a_{m+1}, \ldots, a_n) \\ O(n) time to extract half of list 08

1. (5 points) Suppose that T(n) is the running time of Swim on an input list of length n and assume that n is a power of 2. Give a recursive definition of T(n).

2. (4 points) What is the height of the recursion tree for T(n)?

3. (3 points) What value is in each node at level k of this tree?

4. (3 points) What is the big-Theta running time of Swim?