Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

$$
T(0)=5 \quad T(n)=3 T(n-2)+n^{2}
$$

(a) The height: $\frac{n}{2}$
(b) The number of leaves (please simplify): $3^{\frac{n}{2}}=(\sqrt{3})^{n}$
(c) Value in each node at level k: $(n-2 k)^{2}$

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$
n \quad n \log (17 n) \quad \sqrt{n}+18 \quad 8 n^{2} \quad 2^{n}+n!\quad 2^{\log _{4} n}+5^{n} \quad 0.001 n^{3}+3^{n}
$$

Solution:

$\sqrt{n}+18 \ll n \ll n \log (17 n) \ll 8 n^{2} \ll 0.001 n^{3}+3^{n} \ll 2^{\log _{4} n}+5^{n} \ll 2^{n}+n!$

Name: \qquad

Lecture: A B

\section*{Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

1. (7 points) Recall that f is $O(g)$ if and only if there are positive reals c and k such that $0 \leq f(x) \leq c g(x)$ for every $x \geq k$. Prof. Snape claims that there is a function f (from the reals to the reals) that can never be involved in a big-O relationship. Is he correct?

Solution: He is right. Our definition will never be satisfied if one (or both) of the functions produces only negative outputs.
2. (8 points) Check the (single) box that best characterizes each item.

$$
\text { faster than } n^{2} \quad \square
$$

$$
\text { slower than } n^{2} \quad \sqrt{ }
$$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

$$
T(8)=5 \quad T(n)=3 T(n-2)+c
$$

(a) The height: $\frac{n}{2}-4$
(b) The number of nodes at level k: 3^{k}
(c) Value in each node at level k: c

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$3 n^{2}$
$\frac{n \log n}{7}$
$\left(10^{10^{10}}\right) n$
$0.001 n^{3} \quad 30 \log \left(n^{17}\right)$
$8 n!+18$
$3^{n}+11^{n}$

Solution:
$30 \log \left(n^{17}\right) \ll\left(10^{10^{10}}\right) n \ll \frac{n \log n}{7} \ll 3 n^{2} \ll 0.001 n^{3} \ll 3^{n}+11^{n} \ll 8 n!+18$

Name: \qquad

Lecture: A B

Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely what it means for g to be $\Theta(f)$. Your definition can be in terms of other primitives such as \ll and big-O.
Solution: g is $\Theta(f)$ if and only if g is $O(f)$ and f is $O(g)$.
2. (8 points) Check the (single) box that best characterizes each item.

Suppose f and g produce only positive outputs and $f(n) \ll g(n) . \quad$ no $\quad \square \sqrt{ }$ sometimes $\quad \square$ yes $\quad \square$ Will $g(n)$ be $O(f(n))$?
$n^{\log _{2} 4}$ grows
faster than n^{2} at the same rate as n^{2} \square slower than $n^{2} \quad \square$ at the same rate as $n^{2} \quad \sqrt{ }$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a multiple of 3 .

$$
T(3)=7 \quad T(n)=2 T(n-3)+c
$$

(a) The height: $\frac{n}{3}-1$
(b) The number of leaves (please simplify): $2^{\frac{n}{3}-1}$
(c) Total work (sum of the nodes) at level k (please simplify): There are 2^{k} nodes at level k, each containing value c. So the total work is $c 2^{k}$.

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$n \quad n \log (17 n) \quad \sqrt{n}+2^{n}+18 \quad 8 n^{2} \quad 2^{n}+n!\quad 2^{\log _{4} n} \quad 0.001 n^{3}+3^{n}$

Solution:

$2^{\log _{4} n} \ll n \ll n \log (17 n) \ll 8 n^{2} \ll \sqrt{n}+2^{n}+18 \ll 0.001 n^{3}+3^{n} \ll 2^{n}+n!$

Name:

\qquad
\qquad

Lecture: A B

Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that $f(x)$ is $O(h(x))$ and $g(x)$ is $O(h(x))$. Must $f(x) g(x)$ be $O(h(x))$?

Solution: This is false.
Suppose that $f(x)=g(x)=h(x)=x$. Then $f(x)$ is $O(h(x))$ and $g(x)$ is $O(h(x))$, but $f(x) g(x)=x^{2}$ is not $O(h(x))$.
2. (8 points) Check the (single) box that best characterizes each item.

$T(1)=c$	$\Theta(\log n)$	$\Theta(\sqrt{n})$	$\Theta(n)$	$\Theta(n \log n)$	
$T(n)=3 T(n / 3)+n$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{3}\right)$	$\Theta\left(2^{n}\right)$	$\Theta\left(3^{n}\right)$	
$T(1)=c$	$\Theta(\log n)$	$\Theta(\sqrt{n})$	$\Theta(n)$	$(n \log n)$	
$T(n)=2 T(n / 2)+n^{2}$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{3}\right)$	$\Theta\left(2^{n}\right)$	$\Theta\left(3^{n}\right)$	

Dividing a problem of size n into k sub-

$$
\begin{array}{lll}
k<m & \boxed{V} & k=m \\
k>m & \square & \quad \begin{array}{l}
\\
k
\end{array} \\
& \square & \square
\end{array}
$$ problems, each of size n / m, has the best big- Θ running time when

faster than n^{2}	$\sqrt{ }$	slower than $n^{2} \quad \square$
at the same rate as n^{2}	\square	

Name: \qquad
\qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2 .

$$
T(8)=7 \quad T(n)=4 T\left(\frac{n}{2}\right)+n
$$

(a) The height: $\log _{2} n-3$
(b) Total work (sum of the nodes) at level k (please simplify): There are 4^{k} nodes at level k. Each one contains the value $\frac{n}{2^{k}}$. So the total for the level is $2^{k} n$.
(c) The number of leaves (please simplify): $4^{\log _{2} n-3}=\frac{1}{4^{3}} 4^{\log _{2} n}$
$4^{\log _{2} n}=4^{\log _{4} n \log _{2} 4}=\left(4^{\log _{4} n}\right)^{\log _{2} 4}==n^{\log _{2} 4}=n^{2}$
So the number of leaves is $\frac{1}{4^{3}} n^{2}$.
Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$
3^{n} \quad 4^{\log _{2} n} \quad 2^{3 n} \quad 3^{\log _{2} 4} \quad 0.1 n \quad(5 n)!\quad \sqrt{n}
$$

Solution:
$3^{\log _{2} 4} \ll \sqrt{n} \ll 0.1 n \ll 4^{\log _{2} n} \ll 3^{n} \ll 2^{3 n} \ll(5 n)!$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely when $f \ll g$.
Solution: $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
2. (8 points) Check the (single) box that best characterizes each item.

