Name:												
NetID:	_	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

- T(0) = 5 $T(n) = 3T(n-2) + n^2$
- (a) The height: $\frac{n}{2}$
- (b) The number of leaves (please simplify): $3^{\frac{n}{2}} = (\sqrt{3})^n$
- (c) Value in each node at level k: $(n-2k)^2$

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$n$$
 $n \log(17n)$ $\sqrt{n} + 18$ $8n^2$ $2^n + n!$ $2^{\log_4 n} + 5^n$ $0.001n^3 + 3^n$

Solution:

 $\sqrt{n} + 18 \quad \ll \quad n \quad \ll \quad n \log(17n) \quad \ll \quad 8n^2 \quad \ll \quad 0.001n^3 + 3^n \quad \ll \quad 2^{\log_4 n} + 5^n \quad \ll \quad 2^n + n!$

Name:												
NetID:				Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (7 points) Recall that f is O(g) if and only if there are positive reals c and k such that $0 \le f(x) \le cg(x)$ for every $x \ge k$. Prof. Snape claims that there is a function f (from the reals to the reals) that can never be involved in a big-O relationship. Is he correct?

Solution: He is right. Our definition will never be satisfied if one (or both) of the functions produces only negative outputs.

2. (8 points) Check the (single) box that best characterizes each item.

Name:												
NetID:				Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

- T(8) = 5 T(n) = 3T(n-2) + c
- (a) The height: $\frac{n}{2} 4$
- (b) The number of nodes at level k: 3^k
- (c) Value in each node at level k: c

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $3n^2 \qquad \frac{n\log n}{7} \qquad (10^{10^{10}})n \qquad 0.001n^3 \qquad 30\log(n^{17}) \qquad 8n! + 18 \qquad 3^n + 11^n$

Solution:

 $30\log(n^{17}) \ll (10^{10^{10}})n \ll \frac{n\log n}{7} \ll 3n^2 \ll 0.001n^3 \ll 3^n + 11^n \ll 8n! + 18$

Name:												
NetID:	-	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

- (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely what it means for g to be Θ(f). Your definition can be in terms of other primitives such as ≪ and big-O.
 Solution: g is Θ(f) if and only if g is O(f) and f is O(g).
- 2. (8 points) Check the (single) box that best characterizes each item.

Name:												
NetID:	-	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

- 1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a multiple of 3.
 - T(3) = 7 T(n) = 2T(n-3) + c
 - (a) The height: $\frac{n}{3} 1$
 - (b) The number of leaves (please simplify): $2^{\frac{n}{3}-1}$
 - (c) Total work (sum of the nodes) at level k (please simplify): There are 2^k nodes at level k, each containing value c. So the total work is $c2^k$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

- 2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
 - n $n \log(17n)$ $\sqrt{n} + 2^n + 18$ $8n^2$ $2^n + n!$ $2^{\log_4 n}$ $0.001n^3 + 3^n$

Solution:

 $2^{\log_4 n} \ll n \ll n \log(17n) \ll 8n^2 \ll \sqrt{n} + 2^n + 18 \ll 0.001n^3 + 3^n \ll 2^n + n!$

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that f(x) is O(h(x)) and g(x) is O(h(x)). Must f(x)g(x) be O(h(x))?

Solution: This is false.

Suppose that f(x) = g(x) = h(x) = x. Then f(x) is O(h(x)) and g(x) is O(h(x)), but $f(x)g(x) = x^2$ is not O(h(x)).

2. (8 points) Check the (single) box that best characterizes each item.

Name:												
NetID:	_	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

 $T(8) = 7 \qquad T(n) = 4T\left(\frac{n}{2}\right) + n$

- (a) The height: $\log_2 n 3$
- (b) Total work (sum of the nodes) at level k (please simplify): There are 4^k nodes at level k. Each one contains the value $\frac{n}{2^k}$. So the total for the level is $2^k n$.
- (c) The number of leaves (please simplify): $4^{\log_2 n-3} = \frac{1}{4^3} 4^{\log_2 n} 4^{\log_2 n} = 4^{\log_4 n \log_2 4} = (4^{\log_4 n})^{\log_2 4} = = n^{\log_2 4} = n^2$ So the number of leaves is $\frac{1}{4^3}n^2$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 3^n $4^{\log_2 n}$ 2^{3n} $3^{\log_2 4}$ 0.1n (5n)! \sqrt{n}

Solution:

 $3^{\log_2 4} \ll \sqrt{n} \ll 0.1n \ll 4^{\log_2 n} \ll 3^n \ll 2^{3n} \ll (5n)!$

Name:												
NetID:	-	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

- (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely when f ≪ g.
 Solution: lim_{n→∞} f(n)/g(n) = 0
- 2. (8 points) Check the (single) box that best characterizes each item.

