1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

\[T(0) = 5 \quad T(n) = 3T(n - 2) + n^2 \]

(a) The height:

(b) The number of leaves (please simplify):

(c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

\[n \quad n \log(17n) \quad \sqrt{n} + 18 \quad 8n^2 \quad 2^n + n! \quad 2^{\log_4 n} + 5^n \quad 0.001n^3 + 3^n \]

| | | | | | | | |
1. (7 points) Recall that \(f \) is \(O(g) \) if and only if there are positive reals \(c \) and \(k \) such that
\[
0 \leq f(x) \leq cg(x)
\]
for every \(x \geq k \). Prof. Snape claims that there is a function \(f \) (from the reals to the reals) that can never be involved in a big-O relationship. Is he correct?

2. (8 points) Check the (single) box that best characterizes each item.

<table>
<thead>
<tr>
<th>Function</th>
<th>(\Theta(\log n))</th>
<th>(\Theta(\sqrt{n}))</th>
<th>(\Theta(n))</th>
<th>(\Theta(n \log n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(1) = c)</td>
<td>(T(n) = 2T(n/2) + n)</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(2^n))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Function</th>
<th>(\Theta(\log n))</th>
<th>(\Theta(\sqrt{n}))</th>
<th>(\Theta(n))</th>
<th>(\Theta(n \log n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(1) = d)</td>
<td>(T(n) = T(n/2) + c)</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(2^n))</td>
</tr>
</tbody>
</table>

\(n^{1.5} \) is
\[
\Theta(n^{1.614}) \quad O(n^{1.614}) \quad \text{neither of these}
\]

\(n^{\log_2 5} \) grows faster than \(n^2 \) \quad slower than \(n^2 \) at the same rate as \(n^2 \)
1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

 $T(8) = 5 \quad T(n) = 3T(n - 2) + c$

 (a) The height:

 (b) The number of nodes at level k:

 (c) Value in each node at level k:

 Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $3n^2 \quad \frac{n \log n}{7} \quad (10^{10})n \quad 0.001n^3 \quad 30 \log(n^{17}) \quad 8n! + 18 \quad 3^n + 11^n$
1. (7 points) Suppose that \(f \) and \(g \) are functions from the reals to the reals. Define precisely what it means for \(g \) to be \(\Theta(f) \). Your definition can be in terms of other primitives such as \(\ll \) and big-O.

2. (8 points) Check the (single) box that best characterizes each item.

\[
\begin{align*}
T(1) &= d \\
T(n) &= T(n-1) + c
\end{align*}
\]

\[
\begin{array}{cccccccc}
& \Theta(\log n) & \Theta(\sqrt{n}) & \Theta(n) & \Theta(n \log n) & \\
\Theta(n^2) & \Theta(n^3) & \Theta(2^n) & \Theta(3^n)
\end{array}
\]

\[
\begin{align*}
T(1) &= d \\
T(n) &= 2T(n/2) + c
\end{align*}
\]

\[
\begin{array}{cccccccc}
& \Theta(\log n) & \Theta(\sqrt{n}) & \Theta(n) & \Theta(n \log n) & \\
\Theta(n^2) & \Theta(n^3) & \Theta(2^n) & \Theta(3^n)
\end{array}
\]

Suppose \(f \) and \(g \) produce only positive outputs and \(f(n) \ll g(n) \). Will \(g(n) \) be \(O(f(n)) \)?

- no
- sometimes
- yes

\(n^{\log_2 4} \) grows faster than \(n^2 \)

\(n^{\log_2 4} \) grows slower than \(n^2 \)

\(n^{\log_2 4} \) grows at the same rate as \(n^2 \)
1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a multiple of 3.

 $T(3) = 7 \quad T(n) = 2T(n - 3) + c$

 (a) The height:

 (b) The number of leaves (please simplify):

 (c) Total work (sum of the nodes) at level k (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $n \quad n \log(17n) \quad \sqrt{n} + 2^n + 18 \quad 8n^2 \quad 2^n + n! \quad 2^{\log_4 n} \quad 0.001n^3 + 3^n$

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that $f(x)$ is $O(h(x))$ and $g(x)$ is $O(h(x))$. Must $f(x)g(x)$ be $O(h(x))$?

2. (8 points) Check the (single) box that best characterizes each item.

\[
\begin{align*}
T(1) &= c \\
T(n) &= 3T(n/3) + n \
\quad \Theta(\log n) &\quad \Theta(\sqrt{n}) &\quad \Theta(n) &\quad \Theta(n \log n) \\
\quad \Theta(n^2) &\quad \Theta(n^3) &\quad \Theta(2^n) &\quad \Theta(3^n)
\end{align*}
\]

\[
\begin{align*}
T(1) &= c \\
T(n) &= 2T(n/2) + n^2 \
\quad \Theta(\log n) &\quad \Theta(\sqrt{n}) &\quad \Theta(n) &\quad \Theta(n \log n) \\
\quad \Theta(n^2) &\quad \Theta(n^3) &\quad \Theta(2^n) &\quad \Theta(3^n)
\end{align*}
\]

Dividing a problem of size n into k sub-problems, each of size n/m, has the best big-Θ running time when

- $k < m$
- $k = m$
- $k > m$
- $km = 1$

$n^{\log_2 5}$ grows faster than n^2
$n^{\log_2 5}$ grows at the same rate as n^2
$n^{\log_2 5}$ grows slower than n^2
1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

\[T(8) = 7 \quad T(n) = 4T\left(\frac{n}{2}\right) + n \]

(a) The height:

(b) Total work (sum of the nodes) at level k (please simplify):

(c) The number of leaves (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

\[3^n \quad 4^{\log_2 n} \quad 2^{3n} \quad 3^{\log_4 4} \quad 0.1n \quad (5n)! \quad \sqrt{n} \]
1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely when $f \preccurlyeq g$.

2. (8 points) Check the (single) box that best characterizes each item.

\[
\begin{align*}
T(1) &= d \\
T(n) &= 3T(n - 1) + c
\end{align*}
\]

\[
\begin{array}{cccccc}
\Theta(\log n) & \Theta(\sqrt{n}) & \Theta(n) & \Theta(n \log n) \\
\Theta(n^2) & \Theta(n^3) & \Theta(2^n) & \Theta(3^n)
\end{array}
\]

\[
\begin{align*}
T(1) &= d \\
T(n) &= T(n/2) + n
\end{align*}
\]

\[
\begin{array}{cccccc}
\Theta(\log n) & \Theta(\sqrt{n}) & \Theta(n) & \Theta(n \log n) \\
\Theta(n^2) & \Theta(n^3) & \Theta(2^n) & \Theta(3^n)
\end{array}
\]

\[
\begin{align*}
3^n \text{ is} & \\
3^n \text{ is}
\end{align*}
\]

\[
\begin{array}{cccc}
\Theta(5^n) & O(5^n) & \text{neither of these} \\
\Theta(2^n) & O(2^n) & \text{neither of these}
\end{array}
\]