Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

$$
T(0)=5 \quad T(n)=3 T(n-2)+n^{2}
$$

(a) The height:
(b) The number of leaves (please simplify):
(c) Value in each node at level k :

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$
n \quad n \log (17 n) \quad \sqrt{n}+18 \quad 8 n^{2} \quad 2^{n}+n!\quad 2^{\log _{4} n}+5^{n} \quad 0.001 n^{3}+3^{n}
$$

Name:
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (7 points) Recall that f is $O(g)$ if and only if there are positive reals c and k such that $0 \leq f(x) \leq c g(x)$ for every $x \geq k$. Prof. Snape claims that there is a function f (from the reals to the reals) that can never be involved in a big-O relationship. Is he correct?
2. (8 points) Check the (single) box that best characterizes each item.

$\begin{aligned} & T(1)=c \\ & T(n)=2 T(n / 2)+n \end{aligned}$	$\begin{aligned} & \Theta(\log n) \\ & \Theta\left(n^{2}\right) \end{aligned}$	$\begin{aligned} & \Theta(\sqrt{n}) \\ & \Theta\left(n^{3}\right) \end{aligned}$	$\begin{aligned} & \Theta(n) \\ & \Theta\left(2^{n}\right) \end{aligned}$	$\begin{aligned} & \Theta(n \log n) \\ & \Theta\left(3^{n}\right) \end{aligned}$
$\begin{aligned} & T(1)=d \\ & T(n)=T(n / 2)+c \end{aligned}$	$\begin{aligned} & \Theta(\log n) \\ & \Theta\left(n^{2}\right) \end{aligned}$	$\begin{aligned} & \Theta(\sqrt{n}) \\ & \Theta\left(n^{3}\right) \end{aligned}$	$\begin{aligned} & \Theta(n) \\ & \Theta\left(2^{n}\right) \end{aligned}$	$\begin{aligned} & \Theta(n \log n) \\ & \Theta\left(3^{n}\right) \end{aligned}$
$n^{1.5}$ is	$\Theta\left(n^{1.614}\right)$	$O\left(n^{1.614}\right)$	\square	er of these
$n^{\log _{3} 5}$ grows	at the san	$\begin{aligned} & \text { aan } n^{2} \\ & \text { as } n^{2} \end{aligned}$	slowe	n^{2}

Name:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

$$
T(8)=5 \quad T(n)=3 T(n-2)+c
$$

(a) The height:
(b) The number of nodes at level k :
(c) Value in each node at level k :

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
$3 n^{2} \quad \frac{n \log n}{7}$
$\left(10^{10^{10}}\right) n$
$0.001 n^{3}$
$30 \log \left(n^{17}\right)$
$8 n!+18$
$3^{n}+11^{n}$

Name:
NetID: \qquad Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely what it means for g to be $\Theta(f)$. Your definition can be in terms of other primitives such as \ll and big-O.
2. (8 points) Check the (single) box that best characterizes each item.

$\begin{aligned} & T(1)=d \\ & T(n)=T(n-1)+c \end{aligned}$	$\begin{aligned} & \Theta(\log n) \\ & \Theta\left(n^{2}\right) \end{aligned}$	$\begin{aligned} & \Theta(\sqrt{n}) \\ & \Theta\left(n^{3}\right) \end{aligned}$	$\begin{aligned} & \Theta(n) \\ & \Theta\left(2^{n}\right) \end{aligned}$	$\begin{aligned} & \Theta(n \log n) \\ & \Theta\left(3^{n}\right) \end{aligned}$
$\begin{aligned} & T(1)=d \\ & T(n)=2 T(n / 2)+c \end{aligned}$	$\begin{aligned} & \Theta(\log n) \\ & \Theta\left(n^{2}\right) \end{aligned}$	$\begin{aligned} & \Theta(\sqrt{n}) \\ & \Theta\left(n^{3}\right) \end{aligned}$	$\begin{aligned} & \Theta(n) \\ & \Theta\left(2^{n}\right) \end{aligned}$	$\begin{aligned} & \Theta(n \log n) \\ & \Theta\left(3^{n}\right) \end{aligned}$

Suppose f and g produce only positive outputs and $f(n) \ll g(n) . \quad$ no $\quad \square$ sometimes $\quad \square$ yes \square
Will $g(n)$ Will $g(n)$ be $O(f(n))$?
$n^{\log _{2} 4}$ grows

$$
\begin{aligned}
\text { faster than } n^{2} & \square \\
\text { ame rate as } n^{2} & \square
\end{aligned}
$$ slower than $n^{2} \quad \square$

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a multiple of 3 .

$$
T(3)=7 \quad T(n)=2 T(n-3)+c
$$

(a) The height:
(b) The number of leaves (please simplify):
(c) Total work (sum of the nodes) at level k (please simplify):

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$
n \quad n \log (17 n) \quad \sqrt{n}+2^{n}+18 \quad 8 n^{2} \quad 2^{n}+n!\quad 2^{\log _{4} n} \quad 0.001 n^{3}+3^{n}
$$

Name: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that $f(x)$ is $O(h(x))$ and $g(x)$ is $O(h(x))$. Must $f(x) g(x)$ be $O(h(x))$?
2. (8 points) Check the (single) box that best characterizes each item.

$$
\begin{aligned}
& T(1)=c \\
& T(n)=3 T(n / 3)+n
\end{aligned}
$$

Dividing a problem of size n into k sub-

$$
\begin{array}{ll}
k<m & \square=m \\
k>m & \square
\end{array} \begin{aligned}
& k=1 \\
& k m=1
\end{aligned}
$$ problems, each of size n / m, has the best big- - running time when

slower than $n^{2} \quad \square$

Name:
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2 .

$$
T(8)=7 \quad T(n)=4 T\left(\frac{n}{2}\right)+n
$$

(a) The height:
(b) Total work (sum of the nodes) at level k (please simplify):
(c) The number of leaves (please simplify):

Change of base formula: $\log _{b} n=\left(\log _{a} n\right)\left(\log _{b} a\right)$
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.
3^{n}
$4^{\log _{2} n}$
$2^{3 n}$
$3^{\log _{2} 4}$
$0.1 n$
$(5 n)!\quad \sqrt{n}$

Name:
NetID:
Lecture: A B
Discussion: $\begin{array}{lllllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely when $f \ll g$.
2. (8 points) Check the (single) box that best characterizes each item.

$$
\begin{aligned}
& T(1)=d \\
& T(n)=3 T(n-1)+c \\
& \begin{array}{ll}
\Theta(\sqrt{n}) & \square \\
\Theta\left(n^{3}\right) & \square
\end{array} \\
& \begin{array}{l}
\Theta(n) \\
\Theta\left(2^{n}\right)
\end{array} \\
& \Theta(n \log n) \\
& \Theta\left(3^{n}\right) \\
& T(1)=d \\
& T(n)=T(n / 2)+n \\
& 3^{n} \text { is } \\
& \Theta\left(5^{n}\right) \quad \square \\
& O\left(5^{n}\right) \quad \square \\
& \text { neither of these } \\
& \Theta\left(2^{n}\right) \quad \square \\
& O\left(2^{n}\right) \quad \square \\
& \text { neither of these } \square
\end{aligned}
$$

