Name:												
NetID:	_	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

T(0) = 5 $T(n) = 3T(n-2) + n^2$

- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

n	$n\log(17n)$	\sqrt{n} + 18	$8n^2$	$2^{n} + n!$	$2^{\log_4 n} + 5^n$	$0.001n^3 + 3^n$

Name:												
NetID:	-	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (7 points) Recall that f is O(g) if and only if there are positive reals c and k such that $0 \le f(x) \le cg(x)$ for every $x \ge k$. Prof. Snape claims that there is a function f (from the reals to the reals) that can never be involved in a big-O relationship. Is he correct?

Name:												
NetID:					ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is even.

T(8) = 5 T(n) = 3T(n-2) + c

- (a) The height:
- (b) The number of nodes at level k:
- (c) Value in each node at level k:

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

$3n^2$	$\frac{n\log n}{7}$	$(10^{10^{10}})n$	$0.001n^3$	$30\log(n^{17})$	8n! + 18	$3^n + 11^n$

Name:												
NetID:	_	$\mathrm{L}\epsilon$	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely what it means for g to be $\Theta(f)$. Your definition can be in terms of other primitives such as \ll and big-O.

Name:												
NetID:	_	$\mathrm{L}\epsilon$	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a multiple of 3.

- T(3) = 7 T(n) = 2T(n-3) + c
- (a) The height:
- (b) The number of leaves (please simplify):
- (c) Total work (sum of the nodes) at level k (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

n	$n \log n$	g(17n)	$\sqrt{n} + 2^n + 2^n$	18	$8n^2$	$2^{n} + n!$	2^{\log}	g ₄ n ($0.001n^3 + 3^n$

Name:												
NetID:	_	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (7 points) Suppose that f, g, and h are functions from the reals to the reals, such that f(x) is O(h(x)) and g(x) is O(h(x)). Must f(x)g(x) be O(h(x))?

Name:												
NetID:	_	$\mathbf{L}\mathbf{\epsilon}$	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

- $T(8) = 7 \qquad T(n) = 4T\left(\frac{n}{2}\right) + n$
- (a) The height:
- (b) Total work (sum of the nodes) at level k (please simplify):
- (c) The number of leaves (please simplify):

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

3^n	$4^{\log_2 n}$	2^{3n}	$3^{\log_2 4}$	0.1n	(5n)!	\sqrt{n}	

Name:												
NetID:	-	Le	ectur	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely when $f \ll g$.

