Name:

\qquad
NetID: \qquad Lecture:
A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{p=1}^{n} \frac{p}{p+1} \leq \frac{n^{2}}{n+1}$ for all positive integers n.

Solution:

Proof by induction on n.
Base Case(s): At $n=1, \sum_{p=1}^{n} \frac{p}{p+1}=\frac{1}{2}$ and $\frac{n^{2}}{n+1}=\frac{1}{2}$. So the claim holds at $n=1$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{p=1}^{n} \frac{p}{p+1} \leq \frac{n^{2}}{n+1}$ for $n=1, \ldots, k$.

Inductive Step:

First, let's prove the following lemma: $\frac{k^{2}}{k+1} \leq \frac{k(k+1)}{k+2}$.
Proof of lemma: Notice that $k(k+2)=k^{2}+2 k \leq k^{2}+2 k+1=(k+1)^{2}$. So $k(k+2) \leq(k+1)^{2}$. So (since k is positive) $\frac{k}{k+1} \leq \frac{k+1}{k+2}$. So $\frac{k^{2}}{k+1} \leq \frac{k(k+1)}{k+2}$.

Now by the inductive hypothesis $\sum_{p=1}^{k} \frac{p}{p+1} \leq \frac{k^{2}}{k+1}$ So

$$
\begin{aligned}
\sum_{p=1}^{k+1} \frac{p}{p+1} & =\frac{k+1}{k+2}+\sum_{p=1}^{k} \frac{p}{p+1} \\
& \leq \frac{k+1}{k+2}+\frac{k^{2}}{k+1} \leq \frac{k+1}{k+2}+\frac{k(k+1)}{k+2} \\
& =\frac{k^{2}+2 k+1}{k+2}=\frac{(k+1)^{2}}{k+2}
\end{aligned}
$$

So $\sum_{p=1}^{k+1} \frac{p}{p+1} \leq \frac{(k+1)^{2}}{k+2}$ which is what we needed to show.

Name:

\qquad
NetID: \qquad

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Use (strong) induction to prove the following claim:

Claim: $(2 n)!^{2}<(4 n)$! for all positive integers.

Solution:

Proof by induction on n.
Base Case(s): At $n=1,(2 n)!^{2}=(2!)^{2}=2^{2}=4$ And $(4 n)!=4!=24$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $(2 n)$! $^{2}<(4 n)$! for $n=1,2, \ldots, k$.

Inductive Step: At $n=k+1$, we have
$(2(k+1))!^{2}=(2 k+2)!^{2}=[(2 k+2)(2 k+1)(2 k!)]^{2}=(2 k+2)(2 k+2)(2 k+1)(2 k+1)(2 k)!^{2}$
Also $(4(k+1))!=(4 k+4)!=(4 k+4)(4 k+3)(4 k+2)(4 k+1)(4 k)!$
Also notice that $(2 k+2)(2 k+2)(2 k+1)(2 k+1)<(4 k+4)(4 k+3)(4 k+2)(4 k+1)$ because each of the four terms on the left is smaller than the four terms on the right.

From the inductive hypothesis, we know that $(2 k)!^{2}<(4 k)!$.
Putting this all together, we get

$$
\begin{aligned}
(2(k+1))!^{2} & =(2 k+2)(2 k+2)(2 k+1)(2 k+1)(2 k)!^{2} \\
& <(2 k+2)(2 k+2)(2 k+1)(2 k+1)(4 k)! \\
& <(4 k+4)(4 k+3)(4 k+2)(4 k+1)(4 k)! \\
& =(4(k+1))!
\end{aligned}
$$

So $(2(k+1))!^{2}<(4(k+1))$!, which is what we needed to prove.

Name:

\qquad
NetID: \qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) The operator Π is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1)=4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any reals a_{1}, \ldots, a_{n} between 0 and 1 (inclusive)

$$
\prod_{p=1}^{n}\left(1-a_{p}\right) \geq 1-\sum_{p=1}^{n} a_{p}
$$

Solution:

Proof by induction on n.
Base Case(s): At $n=1, \prod_{p=1}^{n}\left(1-a_{p}\right)=1-a_{1}$ and $1-\sum_{p=1}^{n} a_{p}=1-a_{1}$ so $\prod_{p=1}^{n}\left(1-a_{p}\right) \geq 1-\sum_{p=1}^{n} a_{p}$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n}\left(1-a_{p}\right) \geq$ $1-\sum_{p=1}^{n} a_{p}$ for $n=1, \ldots, k$ and any real numbers a_{1}, \ldots, a_{n} between 0 and 1 (inclusive).

Inductive Step: Let a_{1}, \ldots, a_{k+1} be real numbers between 0 and 1 (inclusive). By the inductive hypothesis, we know that $\prod_{p=1}^{k}\left(1-a_{p}\right) \geq 1-\sum_{p=1}^{k} a_{p}$. Since $\left(1-a_{k+1}\right)$ is positive, this means that $\left(1-a_{k+1}\right) \prod_{p=1}^{k}\left(1-a_{p}\right) \geq\left(1-a_{k+1}\right)\left(1-\sum_{p=1}^{k} a_{p}\right)$. Then we have

$$
\begin{aligned}
\prod_{p=1}^{k+1}\left(1-a_{p}\right) & =\left(1-a_{k+1}\right) \prod_{p=1}^{k}\left(1-a_{p}\right) \\
& \geq\left(1-a_{k+1}\right)\left(1-\sum_{p=1}^{k} a_{p}\right)=1-a_{k+1}+a_{k+1} \sum_{p=1}^{k} a_{p}-\sum_{p=1}^{k} a_{p} \\
& \geq 1-a_{k+1}-\sum_{p=1}^{k} a_{p} \text { because all values } a_{p} \text { are positive } \\
& =1-\sum_{p=1}^{k+1} a_{p}
\end{aligned}
$$

So $\prod_{p=1}^{k+1}\left(1-a_{p}\right) \geq 1-\sum_{p=1}^{k+1} a_{p}$, which is what we needed to show.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Use (strong) induction to prove the following claim.
Claim: For any positive integer $n, \sum_{p=1}^{n} \frac{(-1)^{p-1}}{p}>0$

Solution:

Proof by induction on n.
Base Case(s): At $n=1, \sum_{p=1}^{n} \frac{(-1)^{p-1}}{p}=1>0$. So the claim holds.
At $n=2, \sum_{p=1}^{n} \frac{(-1)^{p-1}}{p}=1-1 / 2=1 / 2>0$. So the claim holds.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\sum_{p=1}^{n} \frac{(-1)^{p-1}}{p}>0$ for $n=1,2, \ldots, k$.

Inductive Step: There are two cases:
Case 1) k is even.
$\sum_{p=1}^{k+1} \frac{(-1)^{k-1}}{k}=\frac{(-1)^{k}}{k+1}+\sum_{p=1}^{k} \frac{(-1)^{p-1}}{p}$.
From the inductive hypothesis, we know that $\sum_{p=1}^{k} \frac{(-1)^{p-1}}{p}$ is positive. Since k is even, we know that $\frac{(-1)^{k}}{k+1}$ is positive. Since $\sum_{p=1}^{k+1} \frac{(-1)^{p-1}}{p}$ is the sum of two positive numbers, it must be positive.

Case 2) k is odd. Then remove two terms from the summation:
$\sum_{p=1}^{k+1} \frac{(-1)^{p-1}}{p}=\frac{(-1)^{k-1}}{k}+\frac{(-1)^{k}}{k+1}+\sum_{p=1}^{k-1} \frac{(-1)^{p-1}}{p}$.
From the inductive hypothesis, we know that $\sum_{p=1}^{k-1} \frac{(-1)^{p-1}}{p}$ is positive. Since k is odd, $\frac{(-1)^{k-1}}{k}+\frac{(-1)^{k}}{k+1}=$ $\frac{1}{k}+\frac{-1}{k+1}=\frac{1}{k}-\frac{1}{k+1}$. Since $\frac{1}{k}$ is larger than $\frac{1}{k+1}, \frac{1}{k}-\frac{1}{k+1}$ is positive. Since $\sum_{p=1}^{k+1} \frac{(-1)^{p-1}}{p}$ is the sum of two positive numbers, it must be positive.

In both cases, we have show that $\sum_{p=1}^{k+1} \frac{(-1)^{k}}{k+1}>0$, which is what we needed to show.

Name:

\qquad
NetID: \qquad

Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Use (strong) induction to prove the following claim:
Claim: $\frac{(2 n)!}{n!n!}>2^{n}$, for all integers $n \geq 2$

Solution:

Proof by induction on n.
Base Case(s): At $n=2, \frac{(2 n)!}{n!n!}=\frac{4!}{2!2!}=\frac{24}{4}=6>4=2^{n}$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\frac{(2 n)!}{n!n!}>2^{n}$, for $n=2, \ldots, k$.

Inductive Step: By the inductive hypothesis, $\frac{(2 k)!}{k!k!}>2^{k}$.
Also notice that $2 k+1>k+1$ because $k \geq 0$. So $\frac{2 k+1}{k+1}>1$.
Then we can compute

$$
\begin{aligned}
\frac{(2(k+1))!}{(k+1)!(k+1)!} & =\frac{(2 k+2)(2 k+1)(2 k)!}{(k+1) k!(k+1) k!}=\frac{(2 k+2)(2 k+1)}{(k+1)^{2}} \frac{(2 k)!}{k!k!} \\
& >\frac{(2 k+2)(2 k+1)}{(k+1)^{2}} 2^{k} \\
& =\frac{(k+1)(2 k+1)}{(k+1)^{2}} 2^{k+1}=\frac{2 k+1}{k+1} 2^{k+1}>2^{k+1}
\end{aligned}
$$

So $\frac{(2(k+1))!}{(k+1)!(k+1)!}>2^{k+1}$, which is what we needed to show.

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x, where $0<x<1,(1-x)^{n} \geq 1-n x$.

Let x be a real number, where $0<x<1$.

Solution:

Proof by induction on n.
Base Case(s): At $n=0,(1-x)^{n}=(1-x)^{0}=1$ and $1-n x=1+0=1$. So $(1-x)^{n} \geq 1-n x$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $(1-x)^{n} \geq 1-n x$ for any natural number $n \leq k$, where k is a natural number.
Inductive Step: By the inductive hypothesis $(1-x)^{k} \geq 1-k x$. Notice that $(1-x)$ is positive since $0<x<1$. So $(1-x)^{k+1} \geq(1-x)(1-k x)$.

But $(1-x)(1-k x)=1-x-k x+k x^{2}=1-(1+k) x+k x^{2}$.
And $1-(1+k) x+k x^{2} \geq 1-(1+k) x$ because $k x^{2}$ is non-negative.
So $(1-x)^{k+1} \geq(1-x)(1-k x) \geq 1-(1+k) x$, and therefore $(1-x)^{k+1} \geq 1-(1+k) x$, which is what we needed to show.

Name:

\qquad
NetID: \qquad Lecture:
A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{p=1}^{n} \frac{1}{p} \leq \frac{n}{2}+1$, for any positive integer n.

Solution:

Proof by induction on n.
Base Case(s): At $n=1, \sum_{p=1}^{n} \frac{1}{p}=1$. Also $\frac{n}{2}+1=1.5$, which is larger. So the claim holds.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]:
Suppose that $\sum_{p=1}^{n} \frac{1}{p} \leq \frac{n}{2}+1$, for $n=1, \ldots, k$.
Inductive Step: In particular, by the inductive hypothesis, $\sum_{p=1}^{k} \frac{1}{p} \leq \frac{k}{2}+1$. Also notice that k is positive, so $k+1 \geq 2$, and therefore $\frac{1}{k+1} \leq \frac{1}{2}$. Thus $\frac{1}{k+1}-\frac{1}{2} \leq 0$. So

$$
\begin{array}{rll}
\sum_{p=1}^{k+1} \frac{1}{p} & =\frac{1}{k+1}+\sum_{p=1}^{k} \frac{1}{p} \leq \frac{1}{k+1}+\frac{k}{2}+1 & \\
& =\left(\frac{k+1}{2}-\frac{k+1}{2}\right)+\left(\frac{1}{k+1}+\frac{k}{2}+1\right) \quad \text { based on backwards scratch work } \\
& =\left(\frac{k+1}{2}+1\right)+\frac{1}{k+1}+\left(\frac{k}{2}-\frac{k+1}{2}\right) \quad \text { rearrange terms } \\
& =\left(\frac{k+1}{2}+1\right)+\frac{1}{k+1}-\frac{1}{2} & \\
& \leq \frac{k+1}{2}+1 \quad \text { because } \frac{1}{k+1}-\frac{1}{2} \leq 0
\end{array}
$$

So $\sum_{p=1}^{k+1} \frac{1}{p} \leq \frac{k+1}{2}+1$, which is what we needed to show.

Name:

\qquad
\qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) The operator Π is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1)=4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a_{1}, \ldots, a_{n},

$$
\prod_{p=1}^{n}\left(1+a_{p}\right) \geq 1+\sum_{p=1}^{n} a_{p}
$$

Solution:

Proof by induction on n.
Base Case(s): At $n=1, \prod_{p=1}^{n}\left(1+a_{p}\right)=1+a_{1}$ and $1+\sum_{p=1}^{n} a_{p}=1+a_{1}$ so $\prod_{p=1}^{n}\left(1+a_{p}\right) \geq 1+\sum_{p=1}^{n} a_{p}$.
Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that $\prod_{p=1}^{n}\left(1+a_{p}\right) \geq$ $1+\sum_{p=1}^{n} a_{p}$ for $n=1, \ldots, k$ and any positive real numbers a_{1}, \ldots, a_{n}.

Inductive Step: Let a_{1}, \ldots, a_{k+1} be positive real numbers. By the inductive hypothesis, we know that $\prod_{p=1}^{k}\left(1+a_{p}\right) \geq 1+\sum_{p=1}^{k} a_{p}$. Then we have

$$
\begin{aligned}
\prod_{p=1}^{k+1}\left(1+a_{p}\right) & =\left(1+a_{k+1}\right) \prod_{p=1}^{k}\left(1+a_{p}\right) \\
& \geq\left(1+a_{k+1}\right)\left(1+\sum_{p=1}^{k} a_{p}\right)=1+a_{k+1}+a_{k+1} \sum_{p=1}^{k} a_{p}+\sum_{p=1}^{k} a_{p} \\
& \geq 1+a_{k+1}+\sum_{p=1}^{k} a_{p} \text { because all values } a_{p} \text { are positive } \\
& =1+\sum_{p=1}^{k+1} a_{p}
\end{aligned}
$$

So $\prod_{p=1}^{k+1}\left(1+a_{p}\right) \geq 1+\sum_{p=1}^{k+1} a_{p}$, which is what we needed to show.

