
CS 173, Spring 19 Examlet 10, colored 1

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim:
n∑

p=1

p

p+ 1
≤

n2

n + 1
for all positive integers n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

p

p+ 1
=

1

2
and n2

n+1
= 1

2
. So the claim holds at n = 1.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that
n∑

p=1

p

p+ 1
≤

n2

n + 1
for n = 1, . . . , k.

Inductive Step:

First, let’s prove the following lemma: k2

k+1
≤

k(k+1)
k+2

.

Proof of lemma: Notice that k(k + 2) = k2 + 2k ≤ k2 + 2k+ 1 = (k+ 1)2. So k(k+ 2) ≤ (k + 1)2. So

(since k is positive) k

k+1
≤

k+1
k+2

. So k2

k+1
≤

k(k+1)
k+2

.

Now by the inductive hypothesis
k∑

p=1

p

p+ 1
≤

k2

k + 1
So

k+1∑

p=1

p

p+ 1
=

k + 1

k + 2
+

k∑

p=1

p

p+ 1

≤
k + 1

k + 2
+

k2

k + 1
≤

k + 1

k + 2
+

k(k + 1)

k + 2

=
k2 + 2k + 1

k + 2
=

(k + 1)2

k + 2

So

k+1∑

p=1

p

p+ 1
≤

(k + 1)2

k + 2
which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: (2n)!2 < (4n)! for all positive integers.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, (2n)!2 = (2!)2 = 22 = 4 And (4n)! = 4! = 24.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that (2n)!2 < (4n)! for
n = 1, 2, . . . , k.

Inductive Step: At n = k + 1, we have

(2(k + 1))!2 = (2k + 2)!2 = [(2k + 2)(2k + 1)(2k!)]2 = (2k + 2)(2k + 2)(2k + 1)(2k + 1)(2k)!2

Also (4(k + 1))! = (4k + 4)! = (4k + 4)(4k + 3)(4k + 2)(4k + 1)(4k)!

Also notice that (2k + 2)(2k + 2)(2k + 1)(2k + 1) < (4k + 4)(4k + 3)(4k + 2)(4k + 1) because each of
the four terms on the left is smaller than the four terms on the right.

From the inductive hypothesis, we know that (2k)!2 < (4k)!.

Putting this all together, we get

(2(k + 1))!2 = (2k + 2)(2k + 2)(2k + 1)(2k + 1)(2k)!2

< (2k + 2)(2k + 2)(2k + 1)(2k + 1)(4k)!

< (4k + 4)(4k + 3)(4k + 2)(4k + 1)(4k)!

= (4(k + 1))!

So (2(k + 1))!2 < (4(k + 1))!, which is what we needed to prove.
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NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator
∏

is like
∑

except that it multiplies its terms rather than adding them.
So e.g.

∏5
p=3(p+ 1) = 4 · 5 · 6. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any reals a1, . . . , an between 0 and 1 (inclusive)

n∏

p=1

(1− ap) ≥ 1−

n∑

p=1

ap

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
∏n

p=1(1−ap) = 1−a1 and 1−
∑n

p=1 ap = 1−a1 so
∏n

p=1(1−ap) ≥ 1−
∑n

p=1 ap.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∏n

p=1(1 − ap) ≥
1−

∑n

p=1 ap for n = 1, . . . , k and any real numbers a1, . . . , an between 0 and 1 (inclusive).

Inductive Step: Let a1, . . . , ak+1 be real numbers between 0 and 1 (inclusive). By the inductive
hypothesis, we know that

∏k

p=1(1 − ap) ≥ 1 −
∑k

p=1 ap. Since (1 − ak+1) is positive, this means that

(1− ak+1)
∏k

p=1(1− ap) ≥ (1− ak+1)(1−
∑k

p=1 ap). Then we have

k+1∏

p=1

(1− ap) = (1− ak+1)

k∏

p=1

(1− ap)

≥ (1− ak+1)(1−

k∑

p=1

ap) = 1− ak+1 + ak+1

k∑

p=1

ap −

k∑

p=1

ap

≥ 1− ak+1 −

k∑

p=1

ap because all values ap are positive

= 1−
k+1∑

p=1

ap

So
∏k+1

p=1(1− ap) ≥ 1−
∑k+1

p=1 ap, which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim.

Claim: For any positive integer n,
n∑

p=1

(−1)p−1

p
> 0

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
∑n

p=1
(−1)p−1

p
= 1 > 0. So the claim holds.

At n = 2,
∑n

p=1
(−1)p−1

p
= 1− 1/2 = 1/2 > 0. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∑n

p=1
(−1)p−1

p
> 0

for n = 1, 2, . . . , k.

Inductive Step: There are two cases:

Case 1) k is even.
∑k+1

p=1
(−1)k−1

k
= (−1)k

k+1
+
∑k

p=1
(−1)p−1

p
.

From the inductive hypothesis, we know that
∑k

p=1
(−1)p−1

p
is positive. Since k is even, we know that

(−1)k

k+1
is positive. Since

∑k+1
p=1

(−1)p−1

p
is the sum of two positive numbers, it must be positive.

Case 2) k is odd. Then remove two terms from the summation:
∑k+1

p=1
(−1)p−1

p
= (−1)k−1

k
+ (−1)k

k+1
+
∑k−1

p=1
(−1)p−1

p
.

From the inductive hypothesis, we know that
∑k−1

p=1
(−1)p−1

p
is positive. Since k is odd, (−1)k−1

k
+ (−1)k

k+1
=

1
k
+ −1

k+1
= 1

k
−

1
k+1

. Since 1
k
is larger than 1

k+1
, 1

k
−

1
k+1

is positive. Since
∑k+1

p=1
(−1)p−1

p
is the sum of two

positive numbers, it must be positive.

In both cases, we have show that
∑k+1

p=1
(−1)k

k+1
> 0, which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: (2n)!
n!n!

> 2n, for all integers n ≥ 2

Solution:

Proof by induction on n.

Base Case(s): At n = 2, (2n)!
n!n!

= 4!
2!2!

= 24
4
= 6 > 4 = 2n.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that (2n)!
n!n!

> 2n, for
n = 2, . . . , k.

Inductive Step: By the inductive hypothesis, (2k)!
k!k!

> 2k.

Also notice that 2k + 1 > k + 1 because k ≥ 0. So 2k+1
k+1

> 1.

Then we can compute

(2(k + 1))!

(k + 1)!(k + 1)!
=

(2k + 2)(2k + 1)(2k)!

(k + 1)k!(k + 1)k!
=

(2k + 2)(2k + 1)

(k + 1)2
(2k)!

k!k!

>
(2k + 2)(2k + 1)

(k + 1)2
2k

=
(k + 1)(2k + 1)

(k + 1)2
2k+1 =

2k + 1

k + 1
2k+1 > 2k+1

So (2(k+1))!
(k+1)!(k+1)!

> 2k+1, which is what we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x, where 0 < x < 1, (1−x)n ≥ 1−nx.

Let x be a real number, where 0 < x < 1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, (1− x)n = (1− x)0 = 1 and 1− nx = 1 + 0 = 1. So (1− x)n ≥ 1− nx.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (1− x)n ≥ 1− nx for any natural number n ≤ k, where k is a natural number.

Inductive Step: By the inductive hypothesis (1−x)k ≥ 1− kx. Notice that (1−x) is positive since
0 < x < 1. So (1− x)k+1 ≥ (1− x)(1 − kx).

But (1− x)(1− kx) = 1− x− kx+ kx2 = 1− (1 + k)x+ kx2.

And 1− (1 + k)x+ kx2 ≥ 1− (1 + k)x because kx2 is non-negative.

So (1−x)k+1 ≥ (1−x)(1− kx) ≥ 1− (1+ k)x, and therefore (1−x)k+1 ≥ 1− (1+ k)x, which is what
we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim:
n∑

p=1

1

p
≤

n

2
+ 1, for any positive integer n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

1

p
= 1. Also n

2
+ 1 = 1.5, which is larger. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that
n∑

p=1

1

p
≤

n

2
+ 1, for n = 1, . . . , k.

Inductive Step: In particular, by the inductive hypothesis,
∑k

p=1
1
p

≤
k

2
+ 1. Also notice that k is

positive, so k + 1 ≥ 2, and therefore 1
k+1

≤
1
2
. Thus 1

k+1
−

1
2
≤ 0. So

k+1∑

p=1

1

p
=

1

k + 1
+

k∑

p=1

1

p
≤

1

k + 1
+

k

2
+ 1

= (
k + 1

2
−

k + 1

2
) + (

1

k + 1
+

k

2
+ 1) based on backwards scratch work

= (
k + 1

2
+ 1) +

1

k + 1
+ (

k

2
−

k + 1

2
) rearrange terms

= (
k + 1

2
+ 1) +

1

k + 1
−

1

2

≤
k + 1

2
+ 1 because

1

k + 1
−

1

2
≤ 0

So
∑k+1

p=1
1
p
≤

k+1
2

+ 1, which is what we needed to show.
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(15 points) The operator
∏

is like
∑

except that it multiplies its terms rather than adding them.
So e.g.

∏5
p=3(p+ 1) = 4 · 5 · 6. Use (strong) induction to prove the following claim:

Claim: For any positive integer n and any positive reals a1, . . . , an,

n∏

p=1

(1 + ap) ≥ 1 +
n∑

p=1

ap

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
∏n

p=1(1+ap) = 1+a1 and 1+
∑n

p=1 ap = 1+a1 so
∏n

p=1(1+ap) ≥ 1+
∑n

p=1 ap.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∏n

p=1(1 + ap) ≥
1 +

∑n

p=1 ap for n = 1, . . . , k and any positive real numbers a1, . . . , an.

Inductive Step: Let a1, . . . , ak+1 be positive real numbers. By the inductive hypothesis, we know
that

∏k

p=1(1 + ap) ≥ 1 +
∑k

p=1 ap. Then we have

k+1∏

p=1

(1 + ap) = (1 + ak+1)
k∏

p=1

(1 + ap)

≥ (1 + ak+1)(1 +

k∑

p=1

ap) = 1 + ak+1 + ak+1

k∑

p=1

ap +

k∑

p=1

ap

≥ 1 + ak+1 +

k∑

p=1

ap because all values ap are positive

= 1 +
k+1∑

p=1

ap

So
∏k+1

p=1(1 + ap) ≥ 1 +
∑k+1

p=1 ap, which is what we needed to show.


