CS 173, Spring 19 Examlet 10, colored

## Name:

NetID: Lecture: A B

## Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{p=1}^{n} \frac{p}{p+1} \leq \frac{n^{2}}{n+1}$ for all positive integers $n$.

Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

## Name:

NetID: Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

(15 points) Use (strong) induction to prove the following claim:

Claim: $(2 n)!^{2}<(4 n)$ ! for all positive integers.

Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

## Name:

$\qquad$

## Lecture: A B

## Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) The operator $\Pi$ is like $\sum$ except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1)=4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer $n$ and any reals $a_{1}, \ldots, a_{n}$ between 0 and 1 (inclusive)

$$
\prod_{p=1}^{n}\left(1-a_{p}\right) \geq 1-\sum_{p=1}^{n} a_{p}
$$

Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

CS 173, Spring 19 Examlet 10, colored

## Name:

$\qquad$
NetID:
Lecture: A B

\section*{Discussion: |  | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

(15 points) Use (strong) induction to prove the following claim.
Claim: For any positive integer $n, \sum_{p=1}^{n} \frac{(-1)^{p-1}}{p}>0$
Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: divide into cases based on whether $k$ is even or odd. Consider removing more than term from the summation in one case.

## Name:

NetID: Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

(15 points) Use (strong) induction to prove the following claim:

Claim: $\frac{(2 n)!}{n!n!}>2^{n}$, for all integers $n \geq 2$

Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

## Name:

NetID: Lecture: A B

## Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number $n$ and any real number $x$, where $0<x<1,(1-x)^{n} \geq 1-n x$.

Let $x$ be a real number, where $0<x<1$.
Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

## Name:

$\qquad$
NetID:
Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

(15 points) Use (strong) induction to prove the following claim:

Claim: $\sum_{p=1}^{n} \frac{1}{p} \leq \frac{n}{2}+1$, for any positive integer $n$.

Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hint: recall that if $x \leq y$, then $\frac{1}{y} \leq \frac{1}{x}$

## Name:

$\qquad$

## Lecture: A B

## Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

(15 points) The operator $\Pi$ is like $\sum$ except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5}(p+1)=4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: For any positive integer $n$ and any positive reals $a_{1}, \ldots, a_{n}$,

$$
\prod_{p=1}^{n}\left(1+a_{p}\right) \geq 1+\sum_{p=1}^{n} a_{p}
$$

Proof by induction on $n$.
Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

