Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dragon d, if d is green, then d is not large or d is fat.
2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For any student s, if s rides a bicycle, then s wears a helmet or s has no fear of death.
3. (5 points) Solve $\frac{3}{x}+m=\frac{3}{p}$ for x, expressing your answer as a single fraction. Simplify your answer and show your work.

Name:

\qquad
NetID:
Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

$$
(p \wedge q) \vee q \equiv
$$

p	q	$p \wedge q$	$(p \wedge q) \vee q$
T	T		
T	F		
F	T		
F	F		

2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every cat c, if c is not fierce or c wears a collar, then c is a pet.
3. (5 points) Solve $16 p^{2}-81=0$ for p. Simplify your answer and show your work.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every dragon d, if d is not large, then d is green or d not hungry.
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tree t, if t is in Illinois and t is not hardy, then t is indoors.
3. (5 points) Suppose that k is a positive integer, x is a positive real number, and $\frac{1}{k}=x+\frac{1}{6}$. What are the possible values for k ? (Hint: k is an INTEGER.) Briefly explain or show work.

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) Show that the following two expressions are not logically equivalent, by giving specific values of p, q for which they produce different values.
$p \rightarrow(q \rightarrow p)$
$(p \rightarrow q) \rightarrow p$
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every car c, if c is a Tesla, then c is new or c is not fast.
3. (5 points) Suppose that k is a positive integer, x is a positive real number, and $\frac{1}{k}+x=\frac{1}{6}$. What are the possible values for k ? (Hint: k is an INTEGER.) Briefly explain or show work.

Name:
NetID:
Lecture: A B
Discussion: $\left.\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5\end{array}\right) 6$

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every tree t, if t grows in Canada, then t is not tall or t is a conifer.
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every garbage can c, if c was supplied by the city, then c is small or c has wheels.
3. (5 points) Solve $3 x+2 m=\frac{w}{y}$ for x, expressing your answer as a single fraction. Simplify your answer and show your work.

Name:
NetID:

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Give a truth table for the following expression and (using your truth table or other means) find a simpler expression equivalent to it.

$$
(p \rightarrow q) \wedge(p \rightarrow \neg q) \equiv
$$

p	q	$p \rightarrow q$	$p \rightarrow \neg q$	$(p \rightarrow q) \wedge(p \rightarrow \neg q)$
T	T			
T	F			
F	T			
F	F			

2. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every book b, if b is blue or b is not heavy, then b is not a math book.
3. (5 points) Solve $\frac{2 m^{2}-m-6}{m-2}=9$ for m. (Assume $m \neq 2$.)

Name:
NetID:
Lecture: A B

Discussion: | | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1. (5 points) State the negation of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

There is a soup s such that s is tasty and s does not contain meat.
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For any bear b, if b is blue and b talks, then b is fuzzy.
3. (5 points) Suppose that G and H are functions whose inputs and outputs are real numbers, defined by $G(x)=x-2$ and $H(x)=\sqrt{2 x+1}$, where the square root function returns only the positive root. Compute the value of $H(G(G(8)))$, showing your work.

Name:

\qquad

Lecture: A B

Discussion: $\begin{array}{llllllllllll} & \text { Thursday } & \text { Friday } & 9 & 10 & 11 & 12 & 1 & 2 & 3 & 4 & 5 \\ 6\end{array}$

1. (5 points) Show that the following two expressions are not logically equivalent, by giving specific values of p, q, and r for which they produce different values.
$(p \rightarrow q) \wedge r$
$p \rightarrow(q \wedge r)$
2. (5 points) State the contrapositive of the following claim, moving all negations (e.g. "not") so that they are on individual predicates.

For every jedi j, if j has a light saber and j is not sick, then j can defeat the Dark Side.
3. (5 points) Suppose that x is an integer and $x^{2}+3 x-18<0$. What are the possible values of x ? Show your work.

