CS 173: Skills list for tenth examlet
- Big O
- Define what it means for a function f to be asymptotically smaller than g (f ≪ g),
O(g) and/or θ(g). where g is another function.
- For specific functions f and g, identify whether f is asymptotically smaller than g (f ≪ g),
O(g) and/or θ(g).
- Know the asymptotic relationships among key primitive functions: constant, log n, n,
n log n, polynomials of
higher orders, exponentials, factorial.
- Given functions f and g, prove that f is O(g) and/or θ(g).
- Induction
- Use induction to prove claims involving inequalities
- Recursion Trees
- Given a recursively defined function, find its closed form by drawing
a recursion tree and adding up the work at all levels.
(Examples would look like those presented in the textbook, e.g.
the level sums are constant or increase in a pattern based on
the key summations given above.)
- Find a big-O solution for a simple recursive definition, of the types that we've
seen as examples of unrolling and recursion trees.