
CS 173 Lecture 13: Bijections and Data Types

José Meseguer

University of Illinois at Urbana-Champaign

1 More on Bijections

Bijecive Functions and Cardinality. If A and B are finite sets we know that
f : AÑ B is bijective iff |A| “ |B|.

If A and B are infinite sets we can define that they have the same cardinality,
written |A| “ |B| iff there is a bijective function. f : AÑ B.

This agrees with our intuition since, as f is in particular surjective, we can use
f : AÑ B to “list1” all elements of B by elements of A. The reason why writing
|A| “ |B| makes sense is that, since f : A Ñ B is also bijective, we can also
use f´1 : B Ñ A to “list” all elements of A by elements of B. Therefore, this
captures the notion of A and B having the “same degree of infinity,” since their
elements can be put into a bijective correspondence (also called a one-to-one and
onto correspondence) with each other.

We will also use the notation A – B as a shorthand for the existence of a
bijective function f : A Ñ B. Of course, then A – B iff |A| “ |B|, but the two
notations emphasize sligtly different, though equivalent, intuitions. Namely, A –
B emphasizes the idea that A and B can be placed in bijective correspondence,
whereas |A| “ |B| emphasizes the idea that A and B have the same cardinality.
In summary, the notations |A| “ |B| and A – B mean, by definition:

A – B ôdef |A| “ |B| ôdef Df P rAÑBspf bijectiveq

Arrow Notation and Arrow Composition. We will adopt the following
arrow notation to abbreviate the description of injective, surjective, and bijective
functions:

– f : A� B ôdef f : AÑ B and f injective
– f : A� B ôdef f : AÑ B and f surjective

– f : A
»
Ñ B ôdef f : AÑ B and f bijective.

Theorem 1 (Arrow Composition).

1. Given A
f
� B

g
� C then g ˝ f : A� C

1 When A “ N, such a listing is called an enumeration. But for sets with greater
degree of infinity, like when A “ R, the word “listing” is more general and avoids
restricting the notion to countably infinite sets.

2 J. Meseguer

2. Given A
f
� B

g
� C then g ˝ f : A� C

3. Given A
f
»
Ñ B

g
»
Ñ C then g ˝ f : A

»
Ñ C

Furthermore, for any set A, idA : AÑ A is bijective.

Proof: (2) was proved in Feb. 23 Discussion Session. To see (1), note that, since
f and g are injective,

gpfpxqq “ gpfpx1qq ñ fpxq “ fpx1q ñ x “ x1.

(3) follows immediately from (1) and (2).

idA : A Ñ A is bijective because idA “ id´1
A . This finishes the proof of the

theorem.

The Set of Bijective Functions rAÑBs–. The set of bijective functions from
A to B is denoted rAÑBs– and is defined by:

rAÑBs– “def tf P rAÑBs | f bijectiveu

Of course, rAÑBs– ­“ H iff |A| “ |B|.

Given any set A, a bijection f : A
»
Ñ A is called a a permutation. Therefore, the

set of permutations of A is defined as:

PermpAq “def rAÑAs–

The slides for this lecture contain a simple example of a set of permutations for
a finite set A with |A| “ 3 and show that |PermpAq| “ 6 “ 3! for such a set.
This is an instance of the following theorem:

Theorem 2. Given finite sets with |A| “ |B| “ n, then |rAÑBs–| “ n! In
particular, |PermpAq| “ n!

The proof is by induction on n “ |A| “ |B| and is left as an exercise.

Algebraic Properties of rAÑAs and PermpAq. Since PermpAq Ď rAÑAs, we
should consider the algebraic properties of PermpAq within the contex of those
of rAÑAs.

The obvious operation that we can perform in rAÑAs is function composition.
Given f, g P rAÑAs we know from Theorem 3 in Lecture 11 that f ˝ g P rAÑAs.
What algebraic properties does this operation have? We also know from the same
theorem that for f, g, h P rAÑAs we have:

Associativity. pf ˝ gq ˝ h “ f ˝ pg ˝ hq
Identity. idA ˝ f “ f “ f ˝ idA.

These are called the monoid laws. Therefore, rAÑAs is a monoid for the function
composition operation.

Bijections and Data Types 3

What are the algebraic properties of PermpAq? By the above Arrow Composition
Theorem we know that given f, g P PermpAq, f ˝g P PermpAq. And by Theorem
3 in Lecture 11 and Lemma 1 in Lecture 12 we also know that for f, g, h P
PermpAq the following algebraic properties hold:

Associativity. pf ˝ gq ˝ h “ f ˝ pg ˝ hq
Identity. idA ˝ f “ f “ f ˝ idA.
Inverse. f ˝ f´1 “ idA “ f´1 ˝ f .

These are called the group laws. Therefore, PermpAq is a group for the permu-
tation composition operation.

2 Bijections as Changes of Data Representation

Algorithms and programs manipulate data. But data can be represented in dif-
ferent ways. For example, we can represent:

– true as T or as 1
– false as F or as 0

We can use bijections to change data representations. For example, the bi-
jection letter2number : tT,Fu

»
Ñ t0, 1u defined by: letter2number “def λx P

tT,Fu. if x “ T then 1 else 0 fi P t0, 1u allows us to change the truth values
from letters to numbers; and its inverse, number2letter “def pletter2numberq´1

allows us to change it back.

Likewise, the natural numbers do have different data representations. For ex-
ample, we saw in the slides for Lecture 9 that the natural numbers in decimal
notation are a language

decN Ă t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u˚

specifiable by a grammar.

In an entirely similar way, the natural numbers in binary notation are also a
language

binN Ă t0, 1u˚

specifiable by a grammar.

An even simpler notation for numbers is the finger notation, where fingerN is,
by definition, the string set fingerN “def t | u

˚, so that we repesent numbers by
“fingers” as follows:

0 “ ε, 1 “ |, 2 “ ||, 3 “ |||, . . .

and number addition is “finger concatenation”

3` 2 “ p|||q p||q “ |||||

We can of course convert numbers in one represetation into the same numbers in
a different representation by the well-known decimal to binary conversion and
back, and likewise we can convert them into finger notation. That is, we have,
for example, bijections:

4 J. Meseguer

– dec2bin : decN »
Ñ binN, with inverse bin2dec : binN »

Ñ decN
– bin2finger : binN »

Ñ fingerN, with inverse finger2bin : fingerN »
Ñ binN

Furthermore, we can compose these changes of data representation to ger new
ones. For example, composing dec2bin : decN »

Ñ binN with bin2finger : binN »
Ñ

fingerN we get a data conversion

dec2finger “ bin2finger ˝ dec2bin : decN »
Ñ fingerN.

The subsets of a set are also data manipulated by many algorithms. Given a
finite set A, its subsets X P PpAq are precisely such data elements. But subsets
of A “ ta1, . . . , anu can be represented in differen ways. The obvious one is to
represent B P PpAq by itself, i.e., as the set of its k elements B “ tai1 , . . . , aiku.
But an attractive, alternative representation is to represent B as a predicate,
that is, as a truth-valued function. Specifically, we can represent each B P PpAq
by its so-called characteristic function, which is the following predicate:

χB “def λx P A. px P Bq P tT,Fu.

The change of data representation

B ÞÑ χB

is a bijection
subset2pred : PpAq »Ñ rAÑtT,Fus

where subset2pred “def λB P PpAq. χB P rAÑtT,Fus . It inverse is the function

pred2subset “def λp P rAÑtT,Fus. tx P A | ppxq “ Tu P PpAq.

Checking that, indeed, pred2subset “ psubset2predq´1 is left as a useful exercise.

3 What is a Data Type?

The changes of data representation we have considered are changes in the repre-
sentation of data types as used in programming languages. For example, letter2number :
tT,Fu

»
Ñ t0, 1u is a change of representation for the data type of Booleans,

dec2bin : decN »
Ñ binN is a change of representation for the data type of Nat-

urals, and subset2pred : PpAq »Ñ rAÑtT,Fus is a change of representation for
the data type of FiniteSubsets of A.

Data types are of two kinds:

Built-in data types like Booleans, Naturals, Integers, and Floats are usally pro-
vided by a programming language in a built-in way;

User-definable data types like Lists, FiniteSubsets of a set, BinaryTrees, Finite-
Functions (called map data types), FiniteRelations (called tables in databases),
FiniteGraphs, and so on, are programmed by the user, or belong to libraries
such as the C++ template library.

Bijections and Data Types 5

The elements of a data type are called data elements or data structures.

All algorithms manipulate data structures in given data types. In fact they are
classified by the kind of data types they handle. For example, as:

– numerical algorithms,
– string algorithms,
– tree algorithms,
– graph algorithms,

and so on.

It is of course impossible to mathematically verify (as opposed to just testing)
the correctness of algorithms and programs without having mathematical models
of the data types they manipulate. Therefore the question:

What is a data type?

which could be rephrased as:

How should a data type be modeled?

is not an idle or trivial question at all. Without a satisfactory, mathematical
answer to this question it is impossible to reason mathematically about data
types and the correctness of programs and algorithms.

Question1: What is a Data Type? Since a data type is a collection of data
elements and Set Theory is the mathematical theory of collections of objects, a
possible, tentative answer to this questions could be:

Answer1: A data type is just a set of data.

This sounds quite reasonable. For example, a so-called enumeration type con-
sisting of data elements a, b, c, and d can be modeled mathematically as the set
ta, b, c, du.

But is this answer right? And how can we find out whether it is right or not?
One way to find out is as follows. Whatever answer we give to Question 1, such
an answer should be consistent with an answer to the following, closely related
question:

Question 2: What is a change of data representation between equivalent
data types?

where by “equivalent” we mean that, for example, tT,Fu and t0, 1u are equiv-
alent representations of the Booleans, and that decN and binN are equivalent
representations of the Naturals. For all the examples we have seen in Section 2,
the most obvious, tentative answer is:

Answer2: A change of data representation between equivalent data types
D and D1 is just a bijection f : D

»
Ñ D1.

6 J. Meseguer

This also seems reasonable, since all the changes of data representation we have
considered are bijections.

But is this answer right? And how can we find out whether it is right or not?
One way to find out is to test whether this answer is right in the simplest possible
example, namely, the equivalent data types tT,Fu and t0, 1u, where, of course,
in t0, 1u not, or, and the and operations have the following truth tables:

NOT :
X X
1 0
0 1

OR :

X1 X2 X1 _X2

1 1 1
1 0 1
0 1 1
0 0 0

AND :

X1 X2 X1 ^X2

1 1 1
1 0 0
0 1 0
0 0 0

Therefore, if Answer2 is right, the following bijection

flip : tT,Fu
»
Ñ t0, 1u

where flip “def λx P tT,Fu. if x “ T then 0 else 1 fi P t0, 1u should be a
change of data representation. But is this right? It does not seem so, since we
get the following nonsense!

1. T^T “ T and flippTq ^ flippTq “ 0^ 0 “ 0,
2. T^ F “ F and flippTq ^ flippFq “ 0^ 1 “ 0.

Therefore, our tentative answers:

Answer1: A data type is just a set of data.

Answer2: A change of data representation between equivalent data types
D and D1 is just a bijection f : D

»
Ñ D1.

are completely wrong!

The Problem. What is the problem? aren’t data types sets and changes of data
representation bijections? Yes, they are. But the above example painfully shows
that they cannot be just sets and just bijections between them. We must look
for shaper answers of the form:

Answer1: A data type is a set of data plus??

Bijections and Data Types 7

Answer2: A change of data representation between equivalent data types
D and D1 is a bijection f : D

»
Ñ D1 plus??

Let us begin by trying to find what additional requirements we should impose
on a bijection to get a satisfactory answer to Question2. The place to look at
is the nonsense (1) and (2) above. The problem with (2), for example, is that

flippT^ Fq “ flippFq “ 1 ­“ 0 “ flippTq ^ flippFq

That is, the problem is that the Boolean operations are not preserved! Any
change of Boolean data representation f : tT,Fu

»
Ñ t0, 1u worth its salt must

satisfy at least the following requirements:

– fp xq “ pfpxqq
– fpx_ yq “ fpxq _ fpyq
– fpx^ yq “ fpxq ^ fpyq

Have we seen something like this before? Yes, we have. Changing _ to `
and ^ to ¨ , we saw in the Homomorphism Lemma of Lecture 7 that the
function:

ρ : ZÑ Zn

where ρ “def λx P Z. rempx, nq P Zn satisfies:

1. ρpa` bq “ ρpaq `n ρpbq
2. ρpabq “ ρpaq ¨n ρpbq

and that a function preserving operations, such as in this case ` and ¨ , is
called a homomorphism. This suggests the following answer to our two questions:

Answer1: A data type is a set D plus some operations on that data.

Answer2: A change of data representation between equivalent data types
D and D1 is a bijection f : D

»
Ñ D1 that is also a homomorphism for

the data operations.

However, Answer1 is not tight enough. A data type cannot be just any set D
with some operations on it. It must be a set whose elements are representable
by finite data structures on a computer. Furthermore the data operations should
be computable by means of terminating programs. Technically this is called a
computable set with computable operations. This excludes sets like R because its
data structures are infinite. Real numbers can only be approximated up to some
level of precision in a computer; for example, by using the data type of IEEE
floating point numbers. A fortiori, even bigger sets like PpRq are excluded from
Answer1: they are not computable at all. Answer2 should also be tightened:
f should be a computable function.

	CS 173 Lecture 13: Bijections and Data Types

