CS 173 Lecture 12: Functions (II)

José Meseguer

University of Illinois at Urbana-Champaign

1 The Surjective Function Theorem

For A and B finite sets, the Pigeonhole Principle Theorem gave us the condition $|A| \leq |B|$ in order for an *injective* function $f: A \to B$ to exist. Is there a similar cardinality condition in order for a *sujective* function $f: A \to B$ to exist?

Theorem 1 (Surjective Function Theorem (SFT)). Given finite sets A and B with $B \neq \emptyset$, there exists a surjective function $f: A \to B$ if an only if $|B| \leq |A|$.

Proof: To see the (\Leftarrow) implication, let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_m\}$ with no repeated elements and, since $B \neq \emptyset$, $m \ge 1$. By hypothesis, $m \le n$. Therefore, the function

$$f = \{(a_1, b_1), \dots, (a_m, b_m), \dots, (a_n, b_m)\}\$$

is surjective.

To prove the (\Leftarrow) implication we prove the contrapositive. That is, we assume n = |A| < |B| and prove that $f: A \to B$ is not surjective. Let $f: A \to B$ be any function. It must have the form:

$$f = \{(a_1, b_{i_1}), \dots, (a_n, b_{i_n})\}\$$

for some $b_{i_1}, \ldots, b_{i_n} \in B$. But then $im(f) = \{b_{i_1}, \ldots, b_{i_n}\}$ is a set with n, possibly repeated, elements. Therefore, $|im(f)| \leq n < |B|$, and therefore, $im(f) \subset B$. Therefore, $f: A \to B$ is not surjective, as desired. This finishes the proof of the SFT Theorem.

2 Bijective Functions

By definition, a function $f:A\to B$ is called *bijective* if and only if it is injective and surjective. As for injective and surjective functions, we are interested in a characterization of the existence of a bijective function between finite sets in terms of their cardinalities.

Theorem 2 (Bijective Function Theorem (BFT)). Given finite sets A and B there exists a bijective function $f: A \to B$ if an only if |B| = |A|.

Proof: We reason by cases. Case 1. $B \neq \emptyset$. Then a bijection $f : A \to B$ exists iff (i) $|A| \leq |B|$ by the Pigeonhole Principle Theorem, and (ii) $|B| \leq |A|$ by the SFT Theorem. That is, iff |B| = |A|, as desired.

Case 2. $B = \emptyset$. We need to prove that a bijective function $f: A \to B$ exists iff 0 = |B| = |A|. That is, iff $A = B = \emptyset$. But if $A \neq \emptyset$, since $B = \emptyset$, there are no functions $f: A \to B$ at all, and a fortiori no bijective functions. So we just need to prove that there is a bijective function $f: \emptyset \to \emptyset$. But $\emptyset \times \emptyset = \emptyset$, and therefore $\mathcal{P}(\emptyset \times \emptyset) = \mathcal{P}(\emptyset) = \{\emptyset\}$. But the single relation $\emptyset: \emptyset \leadsto \emptyset$ is actually the identity function

$$\emptyset = id_{\emptyset} = \{(x, y) \in \emptyset \times \emptyset \mid x = y\}$$

which, since there are no elements, is vacuously injective, and is of course surjective, since $im(id_{\varnothing}) = \varnothing$. This finishes the proof of the BFT Theorem.

2.1 The Inverse Relation of a Function

Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4\}$. Consider the function $f: A \to B$ defined by:

$$f = \{(a, 2), (b, 2), (c, 4), (d, 4)\}.$$

Since $f:A\to B$ is a function, it is of course a typed relation, and therefore it has an inverse relation $f^{-1}:A\leadsto B$. However, we shall see that, unless f is bijective, $f^{-1}:A\leadsto B$ is *not* a function. In particular, in the above example we have:

$$f^{-1} = \{(2, a), (2, b), (4, c), (4, d)\}$$

which is neither total nor single-valued.

Beware of Nonsense! Speaking or writing nonsense is the easiest thing there is. *Mathematical* nonsense is the easiest kind of nonsense one can speak or write; nonsense that can easily remain *undetected* by the very speaker or writer of it. In particular, *misuse* of mathematical notation can get the notation abuser into a hopeless state of confusion. Some of the best examples of such notation abuse nonsense are expressions like:

$$f^{-1}(x) = y$$

for f a function. It confusedly assumes that f^{-1} is a function; but f^{-1} is not a function, unless (as we shall see) f is bijective. This is clearly illustrated by the above example. Of course, given a function $f:A\to B$, what one can always write without any nonsense for some $b\in B$ is $f^{-1}[b]=A'$, where $A'\subseteq A$ is the set $A'=\{x\in A\mid (x,b)\in f\}$. In the above example we have $f^{-1}[1]=f^{-1}[3]=\varnothing$, $f^{-1}[2]=\{a,b\}$, and $f^{-1}[4]=\{c,d\}$. Mathematics textbook writers are not without blame about sowing confusion in student's minds by writing nonsense notation like \sqrt{x} , because \sqrt{x} is not a function at all: it is only the inverse relation of the square function $Ax\in\mathbb{R}$. $Ax\in\mathbb{R}$ is a function at all: $Ax\in\mathbb{R}$ is a function of the square function $Ax\in\mathbb{R}$. $Ax\in\mathbb{R}$ is a function at all: $Ax\in\mathbb{R}$ is a function at all: $Ax\in\mathbb{R}$ is a function of the square function $Ax\in\mathbb{R}$. $Ax\in\mathbb{R}$ is a function at all: $Ax\in\mathbb{R}$ is a function at all: $Ax\in\mathbb{R}$ is a function at all: $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all: $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all are function; $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all are function; $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all are function; $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all are function; $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all are function; $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at all are function; $Ax\in\mathbb{R}$ and $Ax\in\mathbb{R}$ are function at

The Inverse Relation of an Injective Function.

Theorem 3. A function $f: A \to B$ is injective if and only if $f^{-1}: A \leadsto B$ is single-valued.

Proof:

 $\begin{array}{l} -f:A\to B \text{ injective } \Leftrightarrow_{def} \ \forall x,x'\in A(f(x)=f(x')\Rightarrow x=x')\Leftrightarrow\\ -\text{ (by definition of } f(x))\Leftrightarrow \forall x,x'\in A(\forall y\in B((x,y),(x',y)\in f\Rightarrow x=x'))\Leftrightarrow\\ -\text{ (by } (x,y)\in f\Leftrightarrow (y,x)\in f^{-1})\Leftrightarrow \forall y\in B(\forall x,x'\in A((y,x),(y,x')\in f^{-1}\Rightarrow x=x'))\Leftrightarrow_{def}\\ -\Leftrightarrow_{def} \ f^{-1}:A \leadsto B \text{ is single-valued}. \end{array}$

This finishes the proof of the theorem.

The Inverse Function of a Bijective Function.

Theorem 4. A function $f: A \to B$ is bijective if and only if $f^{-1}: A \leadsto B$ is a function.

Proof: $f:A\to B$ is bijective iff $f:A\to B$ is injective and surjective iff (by Theorem 3, and Exercise in pg. 5 of Lecture 10 solved in Problem 2-(d) in Discussion of Session 2/23) $f^{-1}:A\leadsto B$ is single-valued and total iff $f^{-1}:A\leadsto B$ is a function. This finishes the proof of the theorem.

Corollary 1. A function $f: A \to B$ is not bijective if and only if $f^{-1}: A \leadsto B$ is not a function.

Lemma 1 . If a function $f: A \to B$ is bijective, then

(1)
$$f^{-1} \circ f = id_A$$
 and (2) $f \circ f^{-1} = id_B$

Proof: To prove (1) we need to show that both functions are equal, i.e., that for each $a \in A$ $(f^{-1} \circ f)(a) = f^{-1}(f(a)) = a = id_A(a)$. Let f(a) = b. Since $f^{-1}: A \to B$ is a function we then have,

$$f(a) = b \Leftrightarrow (a, b) \in f \Leftrightarrow (b, a) \in f^{-1} \Leftrightarrow f^{-1}(b) = a$$

Therefore, $f^{-1}(f(a)) = f^{-1}(b) = a$, as desired.

The proof of (2) follows immediately from (1). This is because, since $(f^{-1})^{-1} = f$ is a function, by Theorem 4 f^{-1} is bijective, and then, by (1), $f \circ f^{-1} = (f^{-1})^{-1} \circ f^{-1} = id_B$, as desired. This finishes the proof of the theorem.

Beware of Compounded Nonsense! Nonsense, like banking interest, can be compounded. If a function $f: A \to B$ is not bijective, writing things like

$$f^{-1}(f(x)) = x$$
 or $f(f^{-1}(y)) = y$

is not just nonsense, but compounded nonsense! $f^{-1}(f(x)) = x$ makes no sense, since by Corollary 1, f^{-1} is not a function. The only thing that could make sense would be to write $f^{-1}[f(x)]$; but $f^{-1}[f(x)]$ does not denote an element of A. $f^{-1}[f(x)]$ denotes a subset of A. Therefore, even writing $f^{-1}[f(x)] = x$ would be nonsense, since x ranges over elements of A, which usually are not subsets of A. The case of $f(f^{-1}(y)) = y$ is an even more ludicrous kind of nonsense: since $f^{-1}(y)$ makes no sense, $f(f^{-1}(y)) = y$ makes even less sense: it is a piece of compounded nonsense!

2.2 Proving Functions Bijective

How do we prove that a function $f:A\to B$ is bijective? The most obvious way is of course to prove that: (i) f is injective, and (ii) f is surjective. This is a perfectly fine way to obtain a proof. But the following alternative method can be quite helpful. We can instead: (i) define a function $g:B\to A$, and (ii) prove that $g\circ f=id_A$ and $f\circ g=id_B$. This second method has the added advantage of giving us an explicit specification of f^{-1} , since if g satisfies (ii), then $g=f^{-1}$.

Theorem 5.

- 1. A function $f:A\to B$ is bijective if and only if there exists a function $g:B\to A$ such that $g\circ f=id_A$ and $f\circ g=id_B$.
- 2. If, given $f:A\to B$, a function $g:B\to A$ satisfies $g\circ f=id_A$ and $f\circ g=id_B$, then $g=f^{-1}$.

Proof: For (1), the proof of the (\Rightarrow) implication is clear because of Lemma 1: we can just choose $g = f^{-1}$. We can prove the (\Leftarrow) implication for (1) by assuming that such a g exists and then proving $f: A \to B$ injective and surjective:

Injective. Let $a, a' \in A$ be such that f(a) = f(a') we then have a = g(f(a)) = g(f(a')) = a'.

Surjective. We just need to show that $\forall y \in B(\exists x \in A(f(x) = y))$. But since $\forall y \in B(f(g(y)) = y)$, we can just pick x = f(g(y)).

To prove (2) we assume that, given $f: A \to B$, the function $g: B \to A$ satisfies $g \circ f = id_A$ and $f \circ g = id_B$ and prove $g = f^{-1}$. But, by (1), $f: A \to B$ is then bijective; and by Lemma 1 this implies that $\forall y \in B(f(f^{-1}(y)) = y)$. Therefore, for each $y \in B$ we have:

$$f^{-1}(y) = g(f(f^{-1}(y))) = g(y)$$

proving that $g = f^{-1}: B \to A$. This finishes the proof of the theorem.

The slides for this lecture contain various examples of bijective functions and their inverses.