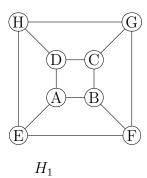
CS 173 Section B, Spring 2016, Examlet 3

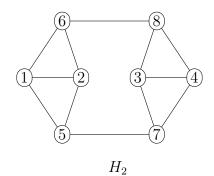
LASTNAME, FIRSTNAME (in CAP letters):	NETID:

Problem	1	2	3	4	5	6	7	Total
Possible	5	15	10	6	14	10	10	70
Score								

1. **[5 points]**

Are the graphs shown below isomorphic? Justify your answer.





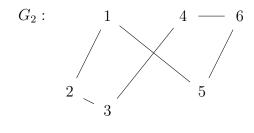
Solution:

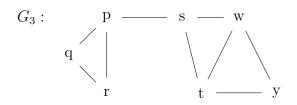
The graphs are not isomorphic.

To see this, notice that H_2 has a 3-clique as a subgraph (1, 2, 5), while there is no 3-clique subgraph of H_1 .

2. [5+5+5=15 points]

 $G_1:$ B A C D E F





Consider the three graphs G_1 , G_2 and G_3 depicted above.

(a) How many connected components does each graph have?

Solution:

 $G_1: 2$

 G_2 : 1

 G_3 : 1

(b) What is the diameter of each of the graphs?

Solution:

 G_1 : ∞ (since the graph is not connected)

 G_2 : 3 (one of the shortest paths of length 3 is $1 \to 5 \to 6 \to 4$)

 G_3 : 4 (one of the shortest paths of length 4 is $r \to p \to s \to t \to y$)

(c) What is the minimum number of colors you need to color each of the graphs? Justify your answer.

Solution:

 G_1 : 3 colors

A 3-coloring: $A \to red$, $E \to blue$, $C \to green$, $B \to red$, $D \to blue$, $F \to green$. Moreover, 3 colors are essential as the graph has a 3-clique (e.g., A, E, C).

 G_2 : 2 colors

A 2-coloring: $1 \rightarrow red$, $2 \rightarrow blue$, $3 \rightarrow red$, $4 \rightarrow blue$, $6 \rightarrow red$, $5 \rightarrow blue$.

Moreover, 2 colors are essential as the graph has an edge.

 G_3 : 3 colors

A 3-coloring: $p \to red$, $q \to blue$, $r \to green$, $s \to blue$, $t \to red$, $w \to green$, $y \to blue$. Moreover, 3 colors are essential as the graph has a 3-clique (e.g., p, q, r).

3. [4+6=10 points]

For every $n \in \mathbb{N}$, n > 0, let $G_n = (V_n, E_n)$ be the graph where

$$V_n = \{s_1, s_2, \dots, s_n\} \cup \{t_1, t_2, \dots, t_n\}$$

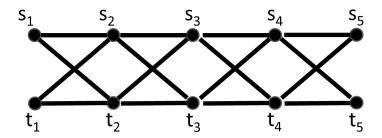
$$E_n = \{s_i t_{i+1} \mid 1 \le i < n\}$$

$$\cup \{s_{i+1} t_i \mid 1 \le i < n\}$$

$$\cup \{s_i s_{i+1} \mid 1 \le i < n\}$$

$$\cup \{t_i t_{i+1} \mid 1 \le i < n\}$$

(a) Draw the graph G_5 .



(b) Prove that for any n > 0, G_n is 2-colorable.

You should give a precise assignment of colors to nodes of G_n , for every n, that gives a valid 2-coloring.

Let n > 0. Let us color G_n as follows.

Assign every node s_i and t_i the color red, when i is odd, and blue, when i is even.

Clearly this is a 2-coloring.

For the edges of the kind $s_i t_{i+1}$, the two vertices have different color.

For the edges of the kind $s_{i+1}t_i$, the two vertices have different color.

For the edges of the kind $s_i s_{i+1}$, the two vertices have different color.

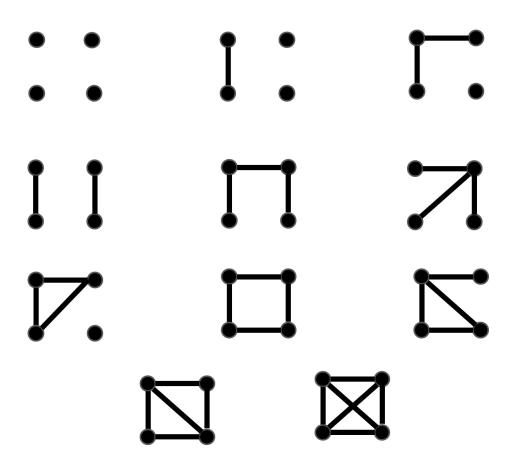
For the edges of the kind $t_i t_{i+1}$, the two vertices have different color.

4. (Enumerate graphs) [6 points]

Draw all graphs with 4 vertices, without repeating isomorphic graphs.

You do not have to label the vertices.

Solution:



5. [14 points]

Mark True or False for each of the questions below.

Think carefully. Multiple choice questions are not necessarily easy!

(a) Let $f: A \to B$ and $g: B \to A$. If $g \circ f: A \to A$ is one-to-one, then f is one-to-one.

True X False

(b) Let $f: A \to B$ and $g: B \to A$. If $g \circ f: A \to A$ is onto, then f is onto.

True False X

(c) Let $f:A\to B$ and $g:B\to A$. If $g\circ f:A\to A$ is one-to-one, then g is one-to-one.

True False X

(d) Let $f:A\to B$ and $g:B\to A$. If f is one-to-one and g is onto, then $g\circ f:A\to A$ is onto.

True False X

(e) Let $f:A\to B$ and $g:B\to A$, where A and B are finite sets. If f is one-to-one and g is one-to-one, then |A|=|B|.

True X False

(f) Let $f:A\to B$ and $g:B\to A$. If $g\circ f:A\to A$ is the identity function (i.e., $g\circ f(x)=x$, for every $x\in A$), then f is one-to-one.

True X False

(g) Let $f: A \to B$ and $g: B \to A$. If $g \circ f: A \to A$ is the identity function (i.e., $g \circ f(x) = x$, for every $x \in A$), then f is onto.

True False X

6. [**10 points**]

Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is an onto function.

Let us define $g: (\mathbb{Z} \times \mathbb{Z}) \to (\mathbb{Z} \times \mathbb{Z})$ as

$$g(x,y) = (f(x) + y, y + 3),$$
 for every $x, y \in \mathbb{Z}$

Prove that q is onto.

Solution:

Let $(p,q) \in \mathbb{Z} \times \mathbb{Z}$ be an arbitrary pair of integers.

Since p-q+3 is an integer and f is onto, we know that there is an integer $x\in\mathbb{Z}$ such that f(x) = p - q + 3.

Let y = q - 3; clearly $y \in \mathbb{Z}$

Now observe that
$$g(x,y) = g(x,q-3) = (f(x)+q-3,q-3+3) = (p-q+3+q-3,q) = (p,q)$$

Hence for every $(p,q) \in \mathbb{Z} \times \mathbb{Z}$, there exists $(x,y) \in \mathbb{Z} \times \mathbb{Z}$ such that g(x,y) = (p,q).

Q.E.D. Hence q is onto.

7. [10 points]

Let P be the set of positive natural numbers.

Let $f: P \times P \to \mathbb{R}^2$ be the function that maps $f(x,y) = (\frac{2x}{y}, x+y+1)$, for every $x,y \in P$.

Prove that f is a one-to-one function. You must work directly from the definition of one-to-one. Do not use any other facts (for example, about the behavior of increasing functions) that you may know.

Solution:

Let $(x, y), (p, q) \in P \times P$ and assume f(x, y) = f(p, q).

Then
$$(\frac{2x}{y}, x + y + 1) = (\frac{2p}{q}, p + q + 1)$$
.

Then
$$(\frac{2x}{y}, x+y+1) = (\frac{2p}{q}, p+q+1)$$
.
Hence $\frac{2x}{y} = \frac{2p}{q}$ and $x+y+1 = p+q+1$.
Hence $xq = py$ and $x+y = p+q$.

Hence
$$xq = py$$
 and $x + y = p + qx$

Hence $x = \frac{py}{q}$. Substituting x in x + y = p + q we get $\frac{py}{q} + y = p + q$.

I.e.,
$$y(p+q) = q(p+q)$$
.

Since
$$p, q \in P$$
, $p + q \neq 0$.

Hence
$$y = q$$
.

Substituting y = q in x + y = p + q, we get x + q = p + q, i.e., x = p.

Hence
$$(x, y) = (p, q)$$
.

Hence f is one-to-one.

Q.E.D.