CS 173, Spring 2016, Examlet 2, Part A

LASTNAME, FIRSTNAME (in CAP letters):	NETID:

Problem	1	2	3	4	5	6	Total
Possible	5	15	5	15	5	15	60
Score							

1. **[5 points]**

We say a relation R over \mathbb{N} is zero-liking if it is an equivalence relation, and moreover for every $i \in \mathbb{N}$, i R 0.

Which of the following are true about zero-liking relations?

There are no zero-liking relations	True	False X
There is precisely one zero-liking relation	True X	False
There are more than one zero-liking relations	True	False X
For any zero-liking relation R and $i, j \in \mathbb{N}, iRj$	True X	False
For any zero-liking relation R and $i,j\in\mathbb{N}$ and $i>0,j>0,$ $i\not\!R j$	True	False X

2. **[15 points]**

Let S be an arbitrary nonempty set and let R be an equivalence relation on S. Let T be the relation:

$$aTb \ iff \ \neg(aRb), \forall a,b \in S$$

In other words, two elements are related by T iff they are not related by R.

In the following, you are either asked to prove a property of T or give a counterexample. A counterexample is a concrete set S and a concrete relation R on S such that the corresponding relation T does not have the specified property.

a) Is T always irreflexive? If yes, give a proof. If no, give a counterexample.

Solution: Yes, T is always irreflexive.

Proof: Let $a \in S$ be an arbitrary element. Since R is an equivalence relation, it is reflexive. Hence aRa. Hence a Ta. Hence T is irreflexive. _____QED.

b) Is T always symmetric? If yes, give a proof. If no, give a counterexample.

Solution: Yes, T is always symmetric.

Proof: Let $a, b \in S$ be arbitrary elements and assume aTb. Then $a \not R b$.

Hence $b \not R a$ (since R is an equivalence relation and hence is symmetric).

Hence bTa.

Hence T is symmetric. _____

QED.

c) Is T always transitive? If yes, give a proof. If no, give a counterexample.

Solution: No, T need not be transitive.

Counterexample: Let $S = \{a, b, c\}$ and let $R = \{(a, a), (b, b), (c, c), (a, b), (b, a)\}.$

Clearly, R is an equivalence relation.

Then $T = \{(a, c), (c, a), (b, c), (c, b)\}.$

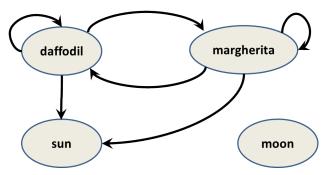
Note that T is not transitive, as aTc and cTb, but $a \not T b$.

CS 173, Spring 2016, Examlet 2, Part B

LASTNAME, FIRSTNAME (in CAP letters):	NETID:

3. **[5 points]**

Let the set A be $A = \{daffodil, margherita, sun, moon\}$, Give a relation R over A that is not symmetric, that is not antisymmetric, but is transitive. Give the relation either as a set of pairs or a directed graph.



4. (Induction) [15 points]

Prove the following, for every natural number n > 0

$$\sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Note that

$$\sum_{i=1}^{n} i(i+1)(i+2) = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2)$$

.

Proof:

We will prove by induction on n, that for every $n \in \mathbb{N}$ with n > 0,

$$\sum_{i=1}^{n} i(i+1)(i+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

Base case:

When n=1,

$$\sum_{i=1}^{n} i(i+1)(i+2) = 1 \cdot 2 \cdot 3 = 6 \text{ and } \frac{n(n+1)(n+2)(n+3)}{4} = \frac{1 \cdot 2 \cdot 3 \cdot 4}{4} = 6$$

Hence the claim holds when n = 0.

Induction step: Let k > 1 be an arbitrary natural number.

Let us assume the **induction hypothesis**: For every $1 \le j < k$,

$$\sum_{i=1}^{j} i(i+1)(i+2) = \frac{j(j+1)(j+2)(j+3)}{4}$$

$$\sum_{i=1}^{k} i(i+1)(i+2) = \sum_{i=1}^{k-1} i(i+1)(i+2) + k(k+1)(k+2)$$

$$= \frac{(k-1)k(k+1)(k+2)}{4} + k(k+1)(k+2)$$
 (by the induction hypothesis)
$$= \frac{(k-1)k(k+1)(k+2) + 4k(k+1)(k+2)}{4}$$

$$= \frac{k(k+1)(k+2)(k-1+4)}{4}$$

$$= \frac{k(k+1)(k+2)(k+3)}{4}$$

Hence we have proved the claim by induction.

QED

CS 173, Spring 2016, Examlet 2, Part C

LASTNAME, FIRSTNAME (in CAP letters):	NETID:
5. [5 points]	
I want to prove that for every natural number $n \in \mathbb{N}$ Which of the following ways are valid ways of proving Check all that apply.	
I prove $P(3)$ holds and prove $P(4)$ holds and prove holds then $P(k)$ holds.	that for every $k > 4$, if $P(k-2)$ X
I prove that $P(3)$ holds and prove that for every $k > i < k$ then $P(k)$ does not hold.	3, if $P(i)$ does not hold for some
I prove that $P(3)$ holds and prove that for every $k \in P(i)$ does not hold, for some $3 \le i < k$.	> 3, if $P(k)$ does not hold, then X
I prove that $P(3)$ holds and prove that for every $k > $ holds.	> 3, if $P(k-2)$ holds then $P(k)$
I prove that $P(3)$ holds, $P(4)$ holds, $P(5)$ holds, produces not hold, then $P(k-2)$ does not hold.	ove that for every $k > 5$, if $P(k)$ X

6. Induction [15 points]

Prove that for every $n \in \mathbb{N}$ with $n \ge 18$, there exists $i, j \in \mathbb{N}$ such that $2^n = 8^i \cdot 1024^j$. (Note: $8 = 2^3$ and $1024 = 2^{10}$).

Solution:

We will prove by induction on n that for every $n \ge 18$, there exists $i, j \in \mathbb{N}$ such that $2^n = 8^i \cdot 1024^j$.

Base cases:

When n = 18, $2^{18} = 8^6 \cdot 1024^0$.

When n = 19, $2^{19} = 8^3 \cdot 1024^1$.

When n = 20, $2^{20} = 8^0 \cdot 1024^2$.

Induction step: Let k > 20 be an arbitrary natural number.

Let us assume the **induction hypothesis**:

For every $18 \le r < k$, there exists $i, j \in \mathbb{N}$ such that $2^r = 8^i \cdot 1024^j$.

Since $18 \le k-3 < k$, by the induction hypothesis, we know that there exists $i, j \in \mathbb{N}$ such that $2^{k-3} = 8^i \cdot 1024^j$.

Hence $2^k = 2^3 \cdot 2^{k-3} = 8 \cdot 8^i \cdot 1024^j = 8^{i+1} \cdot 1024^j$.

Since $i+1, j \in \mathbb{N}$, we have shown that $2^k = 8^s \cdot 1024^t$ for some $s, t \in \mathbb{N}$.

Hence we have proved the claim by induction._____QED.