Homework 4

Discrete Structures CS 173 [B] : Fall 2015

March 11, 2015

Solutions.

Note: Throughout this homework, a "graph" stands for a *simple* graph.

1. Matching Number.

[8 points]

We say that a simple graph H is a matching if no vertex in H has degree more than 1. For a simple graph G, we define its matching number to be the maximum number of edges in any subgraph of G which is a matching.

For each of the following graphs, compute its matching number: C_5 , K_5 , W_5 , $K_{4,5}$.

Solution:

- C_5 and K_5 : 2
- W_5 : 3 (W_5 has 6 nodes, and a "perfect matching" (involving all vertices) is possible, with 2 edges as in the case of C_5 , and an edge between the hub and the remaining vertex.)
- $K_{4,5}$: 4 (More generally $K_{m,n}$ has matching number min $\{m,n\}$.)

2. Complement of a Graph

[8 points]

We define the *complement of a graph* as a graph which has the same vertex set, but with exactly those edges that are absent from the original graph. Formally, if G = (V, E), its complement $\overline{G} = (V, \overline{E})$, such that $\overline{E} = K_V \setminus E$ where $K_V = \{\{a, b\} | a \in V, b \in V, a \neq b\}$.

Match each graph on the left with a description of its complement:

- (a) A graph with no edges.
- (b) A graph with a single edge.
- [a] (c) A path with two edges.
- [d] (d) A matching with two edges.
- [g] (e) A graph isomorphic to the original
- [e] one
 - (f) A complete graph.
 - (g) A cyclic graph.

(a) K_4

(b) C_4

(c) $K_{1,3}$

(d) P_4 (a path with 4 nodes)

3. What is Wrong With this Proof?

[4 points]

Claim: If every vertex in a graph has degee at least 1, then the graph is connected.

Proof. We use induction. Let P(n) be the proposition that if every vertex in an n-vertex graph has degree at least 1, then the graph is connected.

Base case: There is only one graph with a single vertex and it has degree 0. Therefore, P(1) is vacuously true.

Inductive step: We must show that P(n) implies P(n+1) for all n > 1.

Consider an n-vertex graph G in which every vertex has degree at least 1. By the induction hypothesis, G is connected; that is, there is a path between every pair of vertices. Now we add one more vertex x to G to obtain an (n+1)-vertex graph H. Since x must have degree at least one, there is an edge from x to some other vertex; call it y. Since y is connected to every other node in the graph, x will be connected to every other node in the graph. QED

	Α.	The proof needs to consider base case $n=2$.
	В.	The proof needs to use strong induction.
	C.	The proof should instead induct on the degree of each node.
\checkmark	D.	The proof only considers $(n+1)$ node graphs with minimum degree 1 from which deleting a vertex gives a graph with minimum degree 1.
	Е.	The proof only considers n node graphs with minimum degree 1 to which adding a vertex with non-zero degree gives a graph with minimum degree 1.
	F.	This is a trick question. There is nothing wrong with the proof!

4. Triangle-Free and Claw-Free Graphs.

[20 points]

Recall that an *induced subgraph* of G is obtained by removing zero or more vertices of G as well as all the edges incident on the removed vertices. (No further edges can be removed.) Formally, G' = (V', E') is an induced subgraph of G = (V, E) if $V' \subseteq V$ and $E' = \{\{a, b\} \mid a \in V', b \in V', \{a, b\} \in E\}$.

A graph G is said to be H-free if no induced subgraph of G is isomorphic to H. For example, G = (V, E) is K_3 -free (or triangle free) if and only if there are no three distinct vertices a, b, c in V such that $\{\{a,b\}, \{b,c\}, \{c,a\}\} \subseteq E$.

Prove that the complement of a K_3 -free graph is a $K_{1,3}$ -free graph.

[Hint: Prove the contrapositive.]

Solution: We need to prove that for any grapp G, if G is K_3 -free, then \overline{G} (denoting its complement) is $K_{1,3}$ -free. The contrapositive states that for any graph G, if \overline{G} is not $K_{1,3}$ -free, then G is not K_3 free.

To prove this, suppose G is such that \overline{G} is not $K_{1,3}$ -free. Hence, by definition, $K_{1,3}$ is an induced subgraph of \overline{G} . That is, there are some 4 vertices in \overline{G} , say, a,b,c,d such that the edges $\{a,b\},\{a,c\},\{a,d\}$ are present and $\{b,c\},\{c,d\},\{d,b\}$ are absent in \overline{G} . But this means that the edges $\{b,c\},\{c,d\},\{d,b\}$ are present in G. Hence G is not K_3 -free.

 $^{^{1}}$ The graph $K_{1,3}$ is often called the "claw" graph. So this problem can be restated as asking you to prove that the complement of a triangle-free graph is a claw-free graph.

5. Regular Graph. [20 points]

For any integer $n \geq 3$ and any even integer d with $2 \leq d \leq n-1$, show that there exists a d-regular graph with n nodes, by giving an explicit construction.

For full credit, describe your graph as (V, E) where $V = \mathbb{Z}_n$ and E is formally defined using modular arithmetic. (You may find it convenient to use S_a to denote $\{1, \ldots, a\} \subseteq \mathbb{Z}_n$.)

[Hint: What would you do for d = 2? Then consider adding additional edges for larger values of d.]

Solution: Informally, a d regular graph can can be constructed by arranging all n vertices in a circle, and joining each vertex to the first d/2 vertices to its right and d/2 vertices to its left.

Formally, let G = (V, E), where $V = \mathbb{Z}_n$ and $E = \{\{a, b\} | a - b \in S_{d/2}\}$, where $S_{d/2} = \{1, \dots, d/2\}$. Then, any vertex $a \in V$ is connected to $\{a - 1, \dots, a - d/2\} \cup \{a + 1, \dots, a + d/2\}$. Since $d \leq n - 1$, the d elements in these two sets are all distinct. (To argue this more formally, note that a - i = a + j only if i + j = 0 (in \mathbb{Z}_n), but since $i, j \in \{1, \dots, d/2\}$, we have $i + j \in \{2, \dots, d\}$, and as $d \leq n - 1$, 0 does not belong to this set.)

6. Prove using Induction.

[20 points]

Prove that for any positive integer n, for any triangle-free graph G = (V, E) with |V| = 2n, it must be the case that $|E| \le n^2$.

Solution:

Base case: For n = 1, consider any graph G = (V, E), with |V| = 2. It can have at most one edge, and hence $|E| \le 1 = n^2$, as claimed.

Induction step: We shall prove that for all $k \ge 1$, if the claim holds for n = k, it holds for n = k + 1 as well.

Induction hypothesis: suppose for an arbitrary integer $k \geq 1$, any triangle-free graph with 2k nodes has at most k^2 edges.

Then, consider any triangle-free graph G = (V, E) with 2(k+1) = 2k + 2 nodes.

Case 1: if G has no edge, then clearly $|E| \leq (k+1)^2$.

Case 2: if G has at least one edge, $\{u,v\}$. Then, let G' be the graph obtained from G by removing u,v and all edges incident on them. Then, by induction hypothesis, G' has at most k^2 edges. We need to count the additional edges in G (all of which involve either u or v or both). Since G is triangle-free, and the edge $\{u,v\}$ exists, there is no vertex w such that both $\{u,w\}$ and $\{v,w\}$ are edges in G (because if they did, then we will have a triangle induced by $\{u,v,w\}$. In other words, for each of the 2k vertices w in G', at most one of the edges $\{u,w\}$ and $\{v,w\}$ exists in G. Thus the total number of edges in G in addition to the edges in G' is at most 2k+1 (counting at most one edge between each of the 2k vertices in G' and u,v, and the one edge $\{u,v\}$). Combined with the above observation that G' has at most k^2 edges, G has at most $k^2+2k+1=(k+1)^2$ edges.

7. Prove using Strong Induction.

[20 points]

Prove that for any graph G and any two nodes a and b in G, if there is a walk from a to b, then there is a path from a to b.

[Hint: Induct on the length of the walk.]

Claim: For all $n \in \mathbb{N}$, for any graph G = (V, E), and any two vertices $a, b \in V$, if G contains a walk of length n from a to b, then G has a path from a to b.

Base case: n = 0. In this case, any walk of length 0 from a to b (where b must be equal to a) is also a path from a to b.

Induction step: We shall prove that for any $k \in \mathbb{N}$, if the claim holds for all $n \leq k$, then it holds for n = k + 1.

Induction hypothesis: Suppose, for some $k \in \mathbb{N}$, for all $n \leq k$, it holds that for any graph G = (V, E), and any two vertices $a, b \in V$, if G contains a walk of length n from a to b, then G has a path from a to b.

Now, suppose G is a graph with a walk W of length k+1 from a to b.

Case 1: if the walk W is a path, then indeed there is a path from a to b.

Case 2: Suppose W is not a path. This means $W = a = v_0, \ldots, v_{k+1} = b$, such that for some i < j, $v_i = v_j$. Then consider $W' = v_0, \ldots, v_i, v_{j+1}, \ldots, v_{k+1}$. (If $j = k+1, W' = v_0, \ldots, v_i$.) Note that W' is a valid path from a to b, since every two adjacent nodes in W' are adjacent in W as well (including (v_i, v_{j+1}) since $v_i = v_j$). Further, note that the length of W' is strictly smaller than that of W (since i < j). Thus, W' is a path of length $\ell \le k$ from a to b, and by the induction hypothesis, there is a path from a to b.