Homework 2

Discrete Structures CS 173 [B] : Fall 2015

Released: Fri Feb 13 Due: Fri Feb 20, 10:00 PM

Submit on Moodle.

1. Euclidean Algorithm

[25 points]

(a) Trace the execution of the Euclidean algorithm on the inputs a=837 and b=2015. For this, give a table showing the values of the variables x, y, r (as in the description in the textbook), for each pass through the loop. Explicitly indicate what gcd(837, 2015) is.

Then, find two integers u, v such that $837u + 2015v = \gcd(837, 2015)$.

[Hint: For the second part, you'll have to work backwards through the table. It will be helpful to maintain another column in your table for the quotient, q, so that r = x - qy. Find the first time the gcd appears as a remainder r, and write it as x - qy. Now, moving to the previous step, write this is an expression in terms of y and r. Iteratively, replace r similarly, maintaining an expression of the form $\alpha x + \beta y$ at each row.]

(b) **Speed of Euclidean Algorithm.** The Euclidean algorithm zooms into the answer quite quickly. This is because, at each step one of the numbers is replaced by a number which is at most half of it. To see this, prove the following.

If x, y are positive integers with $y \le x$, and r is the remainder on dividing x by y (i.e., $x \equiv r \pmod{y}$ and $0 \le r < y$), then $r < \frac{x}{2}$.

[Hint: consider two cases: $y \leq \frac{x}{2}$ and $y > \frac{x}{2}$. In the latter case, what is r?]

2. Lattice. [25 points]

Over $\mathbb{Z} \times \mathbb{Z}^+ \times \mathbb{Z}^+$, define the predicate M(x,a,b) to be true iff $\gcd(a,b) \mid x$ (i.e., x is a multiple of $\gcd(a,b)$). Also define the predicate L(x,a,b) to be true iff $\exists r,s \in \mathbb{Z} \ x = ra + sb$. (This says that x is in the "lattice" generated by a and b.) Prove that

$$\forall x \in \mathbb{Z}, \forall a, b \in \mathbb{Z}^+ \ M(x, a, b) \leftrightarrow L(x, a, b).$$

[Hint: You will have to show both $L(x,a,b) \to M(x,a,b)$ and $M(x,a,b) \to L(x,a,b)$. The first one you should be able to show from the definitions. For the other direction, you can use the fact (implied by the Euclidean algorithm for GCD) that $\forall p,q \in \mathbb{Z}^+ \exists u,v \in \mathbb{Z} \ \gcd(p,q) = up + vq$.]

3. Congruence mod m.

[25 points]

Recall the following definition: integers a and b are congruent modulo an integer m (in shorthand: $a \equiv b \pmod{m}$) if and only if there is an integer k such that a = b + km. Prove the following statements directly using the above definition, together with high school algebra. Do not use other facts about modular arithmetic proved in class or in the book.

- (a) For any integers p, q, s, t and m, if $p \equiv q \pmod{m}$ and $s \equiv t \pmod{m}$, then $ps \equiv qt \pmod{m}$.
- (b) For any integers x, y and m, if $x \equiv y \pmod{m}$, then $\gcd(x, m) = \gcd(y, m)$.

[Hint: Show that, in fact, not just the gcd, but all common factors of (x, m) are common factors of (y, m), and vice versa.]

4. A Set representing Prime Factorization.

[25 points]

For every positive integer n, define a set $PF_n \subseteq \mathbb{Z}^+ \times \mathbb{Z}^+$ to denote the prime factors of n, as follows.

$$PF_n = \{(p, i) : p \text{ is prime, } i \in \mathbb{Z}^+ \text{ and } (p^i \mid n)\}.$$

- (a) What is PF_1 ?
- (b) Explicitly write down PF_{12} and PF_{30} .
- (c) Write down $PF_{gcd(12,30)}$.
- (d) Write down $PF_{lcm(12,30)}$.
- (e) For any two positive integers m and n, give formulas for $PF_{\gcd(m,n)}$ and $PF_{\operatorname{lcm}(m,n)}$ in terms of PF_m and PF_n .