CS 173 (B), Spring 2015, Examlet 4, Part B

NAME: NETID:

Discussion Section: BDA:1PM BDB:2PM BDC:3PM BDD:4PM BDE:5PM

1. Edges of the Hypercube

Recall that Q_n stands for the *n*-dimensional hypercube. Let α_n denote the number of edges in Q_n . Answer the following questions.

(a) Choose the correct recurrence relation defining α_n .

[5 points]

 \square A. $\alpha_0 = 1$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \ge 1$

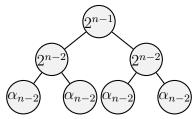
72 points

- \square B. $\alpha_1 = 1$ and $\alpha_n = 2\alpha_{n-1}$ for $n \ge 2$
- \square C. $\alpha_1 = 0$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \ge 2$

71 point \(\)

- (b) Draw three levels of a recurrence tree for α_n , with α_{n-2} at the leaves.

[5 points]



(Full points if one more level shown (with α_{n-3} at the leaves). If 2^n in the root and 2^{n-1} in its children: 4 points, if A/C chosen above, 2 points otherwise. 1 point for some resemblance to the correct answer.)

- (c) The closed-form formula for α_n is $n \cdot 2^{n-1}$. [5 points] $(n \cdot 2^n \to \text{if A/C chosen in part (a), then 4 points, else 2 points. 4 points for <math>(n \pm 1)2^{n-1}$. Also 4 points if consistent with the recursion tree above. 1 point if wrong but some resemblance to the correct answer.
- 2. How many nodes are there in a full-binary tree of depth d, if every internal node of the tree has at least one leaf node as a child? [5 points]
- \square A. $2^{d+1} 1$
- \Box B. $2^d + 1$
- \square D. d+1 (2 points)
- ☐ E. There is not enough information to uniquely determine an answer.

CS 173 (B), Spring 2015, Examlet 4, Part B

NAME: NETID:

Discussion Section: BDA:1PM BDB:2PM BDC:3PM BDD:4PM BDE:5PM

1. Edges of the Hypercube

Recall that Q_n stands for the *n*-dimensional hypercube. Let α_n denote the number of edges in Q_n . Answer the following questions.

(a) Choose the correct recurrence relation defining α_n .

[5 points]

 \square A. $\alpha_0 = 1$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \ge 1$

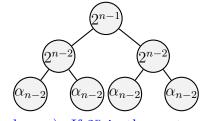
72 points

- \square B. $\alpha_1 = 1$ and $\alpha_n = 2\alpha_{n-1}$ for $n \ge 2$
- \square D. $\alpha_1 = 0$ and $\alpha_n = 2\alpha_{n-1} + 2^n$ for $n \ge 2$

(1 points)

(b) Draw three levels of a recurrence tree for α_n , with α_{n-2} at the leaves.

[5 points]



Full points if one more level shown (with α_{n-3} at the leaves). If 2^n in the root and 2^{n-1} in its children: 4 points, if A/D chosen above, 2 points otherwise. 1 point for some resemblance to the correct answer.

(c) The closed-form formula for α_n is $n \cdot 2^{n-1}$.

[5 points]

 $(n \cdot 2^n \to \text{if A/D chosen in part (a), then 4 points, else 2 points. 4 points for } (n \pm 1)2^{n-1}$. Also 4 points if consistent with the recursion tree above. 1 point if wrong but some resemblance to the correct answer.)

2. How many nodes are there in a full-binary tree of depth d, if every internal node of the tree has at least one leaf node as a child? [5 points]

 \square A. d+1

(2 points)

- \square C. $2^d + 1$
- \Box D. $2^{d+1}-1$
- ☐ E. There is not enough information to uniquely determine an answer.