CS 173 (B), Spring 2015, Examlet 4, Part A

NAME:		NE	TID:	
Discussion Section: BDA:1PM	BDB:2PM BI			BDE:5PM
1. Below is a proof by strong inchas at least $n-1$ edges. The			, any connecte	d graph with n nodes
Fill in the blanks below to cor	nplete the proof.			[25 points]
(a) The base case claim, which	ch is clearly true, is	s that		
every conne	ected graph with 1	node has	at least 0 edges	<u>.</u>
(b) The induction step. We o	claim that:			
$(range\ for\ k:)$	$\forall k \geq \underline{2}$, if			
$(induction\ hypothesis:)$	$\forall n \in \mathbb{Z}^+ \text{ such tha}$	t $n \le k -$	1, it holds that	t any connected graph
	with n nodes has	at	least $n-1$	edges,
(to prove:)	then any connecte	ed graph (G with k nodes	has at least $k-1$ edg
(c) To prove the above claim	, consider an arbit	rary conne	ected graph G	withk
nodes. Let m denote the	number of edges in	G. We ne	ed to prove tha	at $m = \underbrace{\geq k - 1}$.
Let u be an arbitrary node	le in G . Let d be the	ne degree o	of u . From G , i	f we remove u and the
d edges connected to it, v	ve obtain a subgrap	$gh\ H$ of G		
Let t denote the number	of connected comp	onents in	H. Then (give	an upper bound)
	t	$\leq d$	-	(1)
(Justification omitted.)				

For each i = 1, ..., t, let n_i denote the number of vertices in the ith connected component of H, and m_i be the number of edges in it. Clearly,

$$\sum_{i=1}^{t} n_i = \underline{\qquad k-1} \tag{2}$$

Also, for each i = 1, ..., t, since $n_i \le k - 1$, by the induction hypothesis (relate n_i and m_i):

$$m_i \ge n_i - 1 \tag{3}$$

Finally, the number of edges in G, $m = \underbrace{d + \sum_{i=1}^{t} m_i}$ (relate it to m_i). Hence, by equations (1), (2) and (3), (complete the proof)

$$m \ge d + \sum_{i=1}^{t} (n_i - 1)$$

= $d + (k-1) - t \ge k - 1$

CS 173 (B), Spring 2015, Examlet 4, Part A

NAME:		NE	ETID:	
Discussion Section: BDA:1PM	BDB:2PM BDC	:3PM	BDD:4PM BDE	:5PM
1. Below is a proof by strong inchas at least $n-1$ edges. The			, any connected graph	n with n nodes
Fill in the blanks below to con	mplete the proof.			[25 points]
(a) The base case claim, whi	ch is clearly true, is the	nat		
every conne	ected graph with 1 no	de has	at least 0 edges	
(b) The induction step. We	claim that:			
$(range\ for\ k:)$	$\forall k \geq \underline{1}$, if			
$(induction\ hypothesis:)$	$\forall n \in \mathbb{Z}^+ \text{ such that } n$	$k \leq k$, i	t holds that any conne	ected graph G
	with n nodes has	at	$\frac{\text{least } n-1}{\text{edg}}$	es,
(to prove:)	then any connected	graph (G with $k+1$ nodes has	s at least k edg
(c) To prove the above claim	n, consider an arbitrar	y conn	ected graph G with $_$	k+1
nodes. Let m denote the	number of edges in G .	We ne	eed to prove that m	$\geq k$.
Let u be an arbitrary noo	de in G . Let d be the d	degree (of u . From G , if we ren	move u and the
d edges connected to it,	we obtain a subgraph	H of G	у г.	
Let t denote the number	of connected compone	ents in	H. Then (give an upp	er bound)
	t	d	-	(1)
(Justification omitted.)				

For each i = 1, ..., t, let n_i denote the number of vertices in the ith connected component of H, and m_i be the number of edges in it. Clearly,

$$\sum_{i=1}^{t} n_i = \underline{\qquad \qquad k} \tag{2}$$

Also, for each i = 1, ..., t, since $n_i \le k$, by the induction hypothesis (relate n_i and m_i):

$$m_i \ge n_i - 1 \tag{3}$$

Finally, the number of edges in G, $m = \underline{d + \sum_{i=1}^{t} m_i}$ (relate it to m_i). Hence, by equations (1), (2) and (3), (complete the proof)

$$m \ge d + \sum_{i=1}^{t} (n_i - 1)$$
$$= d + k - t \ge k$$