CS 173 (B), Spring 2015, Examlet 3, Part B

NAME:	NETID:

Discussion Section: BDA:1PM BDB:2PM BDC:3PM BDD:4PM BDE:5PM

1. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} x+1 & \text{if } x < -1 \\ x-1 & \text{if } x > 1 \\ 0 & \text{otherwise.} \end{cases} \qquad g(x) = \begin{cases} x-1 & \text{if } x < 0 \\ x+1 & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases}$$

Mark all the correct choices below:

[8 points]

- \square A. f is one-to-one.
- \square B. g is one-to-one.
- \square D. g is onto.
 - ♠ Treat as 4 True/False problems worth 2 point each.
- 2. For f and g as defined above, define $g \circ f$ and $f \circ g$.

[8 points]

Solution:

$$g \circ f(x) = \begin{cases} x & \text{if } x < -1 \text{ or } x > 1 \\ 0 & \text{otherwise.} \end{cases} \qquad f \circ g(x) = x \text{ for all } x \in \mathbb{R}.$$

(Note that f is an inverse of g. On the other hand, f is not one-to-one and hence cannot have an inverse.)

- \spadesuit 4 points for each part. Full points for describing the functions alternatively (e.g., $f \circ g$ is the identity function, or just $f \circ g(x) = x$ without quantifying $\forall x \in \mathbb{R}$).
- \spadesuit -1 if $g \circ f$ is given as identity.
- Up to 2 points for each part, involving some elements of the correct answer.
- 3. Given relations \sqsubseteq_1 and \sqsubseteq_2 over a set S, define a new relation \sqsubseteq_{12} over S as follows:

 $\forall a, b \in S, \ a \sqsubseteq_{12} b \text{ if (and only if) } a \sqsubseteq_1 b \text{ or } a \sqsubseteq_2 b.$

Mark all the correct choices below:

[4 points]

V	Α.	If $ \Box_1 $ is reflexive, so is $ \Box_{12} $.	
	В.	If \sqsubseteq_1 is irreflexive, so is \sqsubseteq_{12} .	Both need to be irreflexive for \sqsubseteq_{12} to be so.)
	С.	If both \sqsubseteq_1 and \sqsubseteq_2 are symmetric, so is \sqsubseteq_{12} .	
	D.	If both \Box_1 and \Box_2 are anti-symmetric, so is \Box	(Consider having $a \sqsubset_1 b$ and $b \sqsubset_2 a$.)
	^	Treat as 4 True/False problems worth 1 point	each.

CS 173 (B), Spring 2015, Examlet 3, Part B

D.T. A. D. 683	ALDED
$ \mathbf{N}\mathbf{\Delta}\mathbf{M}\mathbf{E}\cdot$	
I VI LIVILI.	111111111111111111111111111111111111111

Discussion Section: BDA:1PM BDB:2PM BDC:3PM BDD:4PM BDE:5PM

1. Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} x - 1 & \text{if } x < 0 \\ x + 1 & \text{if } x > 0 \\ 0 & \text{otherwise.} \end{cases} \qquad g(x) = \begin{cases} x + 1 & \text{if } x < -1 \\ x - 1 & \text{if } x > 1 \\ 0 & \text{otherwise.} \end{cases}$$

Mark all the correct choices below:

[8 points]

- \checkmark A. f is one-to-one.
- \square B. g is one-to-one.
- \square C. f is onto.
- - ♠ Treat as 4 True/False problems worth 2 point each.
- 2. For f and g as defined above, define $g \circ f$ and $f \circ g$.

[8 points]

$$g \circ f(x) = x$$
 for all $x \in \mathbb{R}$. $f \circ g(x) = \begin{cases} x & \text{if } x < -1 \text{ or } x > 1 \\ 0 & \text{otherwise.} \end{cases}$

(Note that g is an inverse of f. On the other hand, g is not one-to-one and hence cannot have an inverse.)

- \spadesuit 4 points for each part. Full points for describing the functions alternatively (e.g., $g \circ f$ is the identity function, or just $g \circ f(x) = x$ without quantifying $\forall x \in \mathbb{R}$).
- \spadesuit -1 if $f \circ g$ is given as identity.
- ♠ Up to 2 points for each part, involving some elements of the correct answer.
- 3. Given relations \sqsubseteq_1 and \sqsubseteq_2 over a set S, define a new relation \sqsubseteq_{12} over S as follows:

 $\forall a, b \in S, \ a \sqsubseteq_{12} b \text{ if (and only if) } a \sqsubseteq_1 b \text{ or } a \sqsubseteq_2 b.$

Mark all the correct choices below:

[4 points]

	\blacksquare A. If both \sqsubseteq_1 and \sqsubseteq_2 are symmetric, so is \sqsubseteq_{12}			
	\square B. If both \square_1 and \square_2 are anti-symmetric, so is	$ \Box_{12} $. (Consider having $a \Box_1 b$ and $b \Box_2 a$.)		
	\square D. If \square_1 is irreflexive, so is \square_{12} .	(Both need to be irreflexive for \sqsubseteq_{12} to be so.)		
♠ Treat as 4 True/False problems worth 1 point each.				