CS 173 (B), Spring 2015, Examlet 3, Part A

NAME:	NETID:

Discussion Section: BDA:1PM BDB:2PM BDC:3PM BDD:4PM BDE:5PM

- 1. Given a function f, and a relation \sim over the co-domain of f, let \approx_f be a relation over the domain of f defined as follows: $a \approx_f b$ if $f(a) \sim f(b)$.
 - (a) Consider $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = \lfloor x/5 \rfloor$. Let \sim be = (equality). Then list all $a \in \mathbb{Z}$ such that $a \approx_f 3$.

Solution: f(3) = 0. We have $a \approx_f 3$, or equivalently f(a) = f(3), and for all $a \in \{0, 1, 2, 3, 4\}$.

- ♠ Full points if the list is correct (even without any other work).
- ♠ 4 points if 0 is omitted or 5 is added to the list (or both).
- \spadesuit 2 points for just getting f(3) = 0.
- ♠ 1 point for a list that includes 3.
- (b) Prove that, for any f, if \sim is an equivalence relation, then \approx_f is an equivalence relation. (You should explicitly prove that it satisfies all the properties required of an equivalence relation.) [10 points]

Solution: We shall prove that \approx_f is reflexive, symmetric and transitive:

Reflexive: Consider an arbitrary element $a \in \mathbb{Z}$. We have $f(a) \sim f(a)$, since \sim is reflexive. Hence, by definition of \approx_f , we have $a \approx_f a$. Since this holds for any $a \in \mathbb{Z}$, \approx_f is reflexive. Symmetric: Consider arbitrary $a, b \in \mathbb{Z}$. Suppose $a \approx_f b$. Then, by definition of \approx_f , $f(a) \sim f(b)$. Since \sim is symmetric, this implies that $f(b) \sim f(a)$. Hence, by definition of \approx_f , $b \approx_f a$. Thus for any $a, b \in \mathbb{Z}$ such that $a \approx_f b$, we have $b \approx_f a$. Hence \approx_f is symmetric. Transitive: Consider arbitrary $a, b, c \in \mathbb{Z}$. Suppose $a \approx_f b$ and $b \approx_f c$. Then, by definition of \approx_f , we have $f(a) \sim f(b)$ and $f(b) \sim f(c)$. Since \sim is transitive, we have $f(a) \sim f(c)$. Then, applying the definition of \approx_f again, we have $a \approx_f c$. Thus for any $a, b, c \in \mathbb{Z}$, $a \approx_f b$ and $b \approx_f c$, we have $a \approx_f c$. Hence \approx_f is transitive.

- 4 points for just naming the 3 properties to prove.
- 2 points each for the proof of each property.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as f((x,y)) = (y,y-x). Then define f^{-1} , or show that there is no unique inverse for f.

Solution: To invert f, given f((x,y)) = (a,b), we need to solve for (x,y). That is, we need to solve for (x,y) from (y,y-x) = (a,b). That is, y=a and y-x=b. Hence x=y-b=a-b. Thus, given (y,y-x) = (a,b), the unique solution is (x,y) = (a-b,b). Hence,

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
 is defined as $f((a,b)) = (a-b,b)$.

- \spadesuit 3 points if solving for (x, y) is mentioned, even if they conclude that no unique inverse exists.
- 3. Definitions (use mathematical notation involving quantifiers \forall and \exists only): [4 points] $f: A \to B$ is said to be onto if:

Solution:

 $\forall y \in B, \exists x \in A \text{ such that } f(x) = y.$

- 2 points for this part.
- ♠ 1 point if quantifiers reversed.

 $f: A \to B$ is said to be one-to-one if:

Solution:

 $\forall x_1, x_2 \in A, \ f(x_1) = f(x_2) \to x_1 = x_2.$

- ♠ 2 points for this part.
- \spadesuit 2 points if using $\exists !$ and Im(f): $\forall y \in \text{Im}(f), \exists ! x \in A, f(x) = f(y).$
- 2 points for contrapositive (or an equivalent statement): $\forall x_1, x_2 \in A, \ x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$.

Or, "for all distinct $x_1, x_2 \in A$, $f(x_1) \neq f(x_2)$."

 \spadesuit 1 point if "distinct" is missing from above.

CS 173 (B), Spring 2015, Examlet 3, Part A

NAME:	NETID:

Discussion Section: BDA:1PM BDB:2PM BDC:3PM BDD:4PM BDE:5PM

- 1. Given a function f, and a relation \sim over the co-domain of f, let \approx_f be a relation over the domain of f defined as follows: $a \approx_f b$ if $f(a) \sim f(b)$.
 - (a) Consider $f: \mathbb{Z} \to \mathbb{Z}$ defined as $f(x) = \lfloor x/4 \rfloor$. Let \sim be = (equality). Then list all $a \in \mathbb{Z}$ such that $a \approx_f 6$.

Solution: f(6) = 1. We have $a \approx_f 6$, or equivalently f(a) = f(6), and for all $a \in \{4, 5, 6, 7\}$.

- ♠ Full points if the list is correct (even without any other work).
- ♠ 4 points if 4 is omitted or 8 is added to the list (or both).
- \spadesuit 2 points for just getting f(6) = 0.
- ♠ 1 point for a list that includes 6.
- (b) Prove that, for any f, if \sim is an equivalence relation, then \approx_f is an equivalence relation. (You should explicitly prove that it satisfies all the properties required of an equivalence relation.) [10 points]

Solution: We shall prove that \approx_f is reflexive, symmetric and transitive:

Reflexive: Consider an arbitrary element $a \in \mathbb{Z}$. We have $f(a) \sim f(a)$, since \sim is reflexive. Hence, by definition of \approx_f , we have $a \approx_f a$. Since this holds for any $a \in \mathbb{Z}$, \approx_f is reflexive. Symmetric: Consider arbitrary $a, b \in \mathbb{Z}$. Suppose $a \approx_f b$. Then, by definition of \approx_f , $f(a) \sim f(b)$. Since \sim is symmetric, this implies that $f(b) \sim f(a)$. Hence, by definition of \approx_f , $b \approx_f a$. Thus for any $a, b \in \mathbb{Z}$ such that $a \approx_f b$, we have $b \approx_f a$. Hence \approx_f is symmetric. Transitive: Consider arbitrary $a, b, c \in \mathbb{Z}$. Suppose $a \approx_f b$ and $b \approx_f c$. Then, by definition of \approx_f , we have $f(a) \sim f(b)$ and $f(b) \sim f(c)$. Since \sim is transitive, we have $f(a) \sim f(c)$. Then, applying the definition of \approx_f again, we have $a \approx_f c$. Thus for any $a, b, c \in \mathbb{Z}$, $a \approx_f b$ and $b \approx_f c$, we have $a \approx_f c$. Hence \approx_f is transitive.

- 4 points for just naming the 3 properties to prove.
- 2 points each for the proof of each property.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be defined as f((x,y)) = (x-y,x). Then define f^{-1} , or show that there is no unique inverse for f. [6 points]

Solution: To invert f, given f((x,y)) = (a,b), we need to solve for (x,y). That is, we need to solve for (x,y) from (x-y,x) = (a,b). That is, x-y=a and x=b. Hence y=x-a=b-a. Thus, given (x-y,x) = (a,b), the unique solution is (x,y) = (b,b-a). Hence,

$$f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$$
 is defined as $f((a,b)) = (b,b-a)$.

- \spadesuit 3 points if solving for (x, y) is mentioned, even if they conclude that no unique inverse exists.
- 3. Definitions (use mathematical notation involving quantifiers \forall and \exists only): [4 points] $f: A \to B$ is said to be one-to-one if:

Solution:

 $\forall x_1, x_2 \in A, \ f(x_1) = f(x_2) \to x_1 = x_2.$

- 2 points for this part.
 - \spadesuit 2 points if using $\exists !$ and $\operatorname{Im}(f) : \forall y \in \operatorname{Im}(f), \exists ! x \in A, f(x) = f(y).$
- 2 points for contrapositive (or an equivalent statement): $\forall x_1, x_2 \in A, \ x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$.

Or, "for all distinct $x_1, x_2 \in A$, $f(x_1) \neq f(x_2)$."

♠ 1 point if "distinct" is missing from above.

 $f: A \to B$ is said to be onto if:

Solution:

 $\forall y \in B, \exists x \in A \text{ such that } f(x) = y.$

- ♠ 2 points for this part.
- \spadesuit 1 point if quantifiers reversed.