CS 173 (B), Spring 2015, Examlet 1, Part B

NAME:	NETID:
Discussion Section: BDA:1PM BDB:2PM BDC:	3PM BDD:4PM BDE:5PM
1. Check the (single) box that best characterizes each i	tem. [6 points
$\forall x \in \mathbb{R}, (x+5 \le 5) \to (x \le 100).$ true $\boxed{\checkmark}$	false undefined
$\neg(p \land \neg q) \equiv \neg p \land q$ true	$\mathrm{false} \boxed{\checkmark}$
$\neg(\forall x \ P(x) \to Q(x))$ $\equiv \exists x \ \neg P(x) \land Q(x)$ true	$\mathrm{false} \boxed{\checkmark}$
2. Predicates	[12 points
Suppose three predicates, C , D and O (standing for being a cat, a dog, or the name of an operating system) are defined over the universe {Lion, Wolf, Fox, Puma, Jaguar}, as follows (T denotes True and F denotes False).	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Select all the statements below that are true. (No ju	
	Since $C(\text{Lion})$ and $C(\text{Jaguar})$
\square B. $\exists x \neg (O(x) \rightarrow C(x))$.	This is the negation of A
$ \bullet $ C. $\exists x \ D(x) \to O(x)$.	consider x s.t. $\neg D(x)$: say $x = \text{Lion}$
	${\cal C}$ and ${\cal D}$ are never simultaneously true
3. Which of the following propositions is equivalent to a A . $\neg p \to F$ (where F stands for false)	the proposition p ? [2 points
\square B. $p \to \neg p$	
\bigcap C $n \to F$	

CS 173 (B), Spring 2015, Examlet 1, Part B

NAME:	NETID:
Discussion Section: BDA:1PM BDB:2PM BDC:	3PM BDD:4PM BDE:5PM
1. Check the (single) box that best characterizes each it	em. [6 points]
$\exists x \in \mathbb{R}, (x+5 \le 5) \land (x > 15).$ true	false \checkmark undefined
$\neg(p \land \neg q) \equiv \neg p \land q$ true	$\text{false} \boxed{\checkmark}$
$\neg(\forall x \ P(x) \to Q(x))$ $\equiv \exists x \ P(x) \land \neg Q(x)$ true	false
2. Predicates	[12 points]
Suppose three predicates, C , D and O (standing for being a cat, a dog, or the name of an operating system) are defined over the universe {Lion, Wolf, Fox, Puma, Jaguar}, as follows (T denotes True and F denotes False).	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Select all the statements below that are true. (No just A . $\exists x \ D(x) \to O(x)$.	,
$ \begin{array}{ccc} \bullet & \text{A.} & \exists x \ D(x) \to C(x). \\ \hline \bullet & \text{B.} & \forall x \ O(x) \to C(x). \end{array} $	consider x s.t. $\neg D(x)$: say $x = \text{Lion}$. Since $C(\text{Lion})$ and $C(\text{Jaguar})$.
$\square \text{c.} \exists x \neg (O(x) \to C(x)).$	This is the negation of A.
	${\cal C}$ and ${\cal D}$ are never simultaneously true.
3. Which of the following propositions is equivalent to t $\square \text{A.} p \to F \text{ (where } F \text{ stands for false)}$ $\square \text{B.} p \to \neg p$	he proposition p ? [2 points]
M G \rightarrow D D	