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This is a half-lecture due to the third quiz.

This lecture surveys facts about graphs that can be drawn in the plane
without any edges crossing (first half of section 9.7 of Rosen).

1 Planar graphs

So far, we’ve been looking at general properties of graphs and very general
classes of relations. Today, we’ll concentrate on a limited class of graph:
simple undirected connected graphs. Recall that a simple graph contains no
self-loops or multi-edges. and connected means that there’s a path between
any two vertices. And we assume (without ever saying this explicitly) that
all graphs are finite.

Which of these graphs are “planar” i.e. can be drawn in the plane without
any edges crossing (i.e. not at a vertex)?

Examples: K} is planar, cube (Q3) is planar, K33 isn’t. See pictures in
Rosen p. 658.

Notice that some pictures of a planar graph may have crossing edges.
What makes it planar is that you can draw at least one picture of the graph
with no crossings.

Why should we care? Connected to a variety of neat results in mathemat-
ics. (I'll show one Friday.) Also, crossings are a nuisance in practical design



problems for circuits, subways, utility lines. Two crossing connections nor-
mally means that the edges must be run at different heights. This isn’t a big
issue for electrical wires, but it creates extra expense for some types of lines
e.g. burying one subway tunnel under another (and therefore deeper than
you would ordinarily need). Circuits, in particular, are easier to manufacture
if their connections live in fewer layers.

2 K33 isn’t planar

I just claimed that K3, 3 isn’t planar. Let’s see why this is really true. First,
let’s label the vertices:

The four vertices A, B, 1, and 2 form a cycle.

A

So C' must live inside the cycle or outside the cycle. Let’s suppose it lives
inside. (The argument is similar if it lives outside.) Our partial graph then
looks like:



The final vertex 3 must go into one of the three regions in this diagram.
And it’s supposed to connect to A, B, and C. But none of the three regions
has all three of these vertices on its boundary. So we can’t add C' and its
connections without a crossing.

This proof is ok, but it requires some care to make it convincing. More-
over, it’s not going to generalize easily to more complex examples. So we're
going to work out (today and Friday) some algebraic properties of planar
graphs. This will let us prove that certain graphs aren’t planar.

3 Faces

A planar graph divides the plane into a set of regions, also called faces. Each
region is bounded by a simple cycle of the graph: the path bounding each
region starts and ends at the same vertex and uses each edge only once. The
numer of edges in this boundary is the degree of the face. By convention, we
also count the unbounded area outside the whole graph as one region.

Examples: a cycle (2 regions), a figure 8 graph (3 regions), two nodes
connected by a single edge (1 region).

This neat division of the plane into a set of regions seems intuitively
obvious, but actually depends on a result from topology called the “Jordan
curve theorem” which states that any simple closed curve (i.e. doesn’t cross
itself, starts and ends at the same place) divides the plane into exactly two
regions. Proving this theorem requires worrying about the possibility that
the curve has infinitely complex patterns of maze-like wiggles, but we won’t
go there.



Since planar graphs are more tightly constrained than general simple
graphs, we have two basic formulas beyond our normal handshaking theorem.
Specifically, if e is the number of edges, v is the number of vertices, and f is
the number of faces/regions, then

e Euler’s formula says that v —e + f = 2.
e Handshaking theorm: sum of vertex degrees is 2e

e Handshaking theorem for faces: sum of the face degrees is also 2e.

To see why the handshaking theorem for faces holds, notice that each
edge normally forms part of the boundary of two faces, one to each side of it.
The few exceptions involve cases where the edge appears twice as we walk
around the boundary of a single face. We’ll prove Euler’s formula below.

4 Trees

Before we try to prove Euler’s formula, let’s look at one special type of planar
graph: trees. In graph theory, a tree is any connected graph with no cycles.
When we normally think of a tree, it has a designated root (top) vertex. In
graph theory, these are called rooted trees. For what we're doing this class,
we don’t need to care about which vertex is the root.

A tree doesn’t divide the plane into multiple regions, because it doesn’t
contain any cycles. In graph theory jargon, a tree has only one face: the
entire plane surrounding it. So Euler’s theorem reduces to v —e = 1, i.e.
e = v — 1. Let’s prove that this is true, by induction.

Proof by induction on the number of vertices in the graph.

Base: If the graph contains no edges and only a single vertex, the
formula is clearly true.

Induction: Suppose the formula works for all trees with up to n
vertices. Let T be a tree with n 4+ 1 vertices. We need to show
that T has n edges.



Now, we find a vertex with degree 1 (only one edge going into
it). To do this start at any vertex r and follow a path in any
direction, without repeating edges. Because T has no cycles, this
path can’t return to any vertex it has already visited. So it must
eventually hit a dead end: the vertex at the end must have degree
1. Call it p.

Remove p and the edge coming into it, making a new tree 1"
with n vertices. By the inductive hypothesis, 7" has n — 1 edges.
Since T has one more edge than 7", T has n edges. Therefore our
formula holds for T

5 Proof of Euler’s formula

We can now prove Euler’s formula (v — e + f = 2) works in general, for any
connected planar graph.

Proof: by induction on the number of edges in the graph.

Base: If e = 0, the graph consists of a single vertex with a single
region surrounding it. So we have 1 — 0+ 1 = 2 which is clearly
right.

Induction: Suppose the formula works for all graphs with no more
than n edges. Let GG be a graph with n + 1 edges.

Case 1: G doesn’t contain a cycle. So G is a tree and we already
know the formula works for trees.

Case 2: G contains at least one cycle. Pick an edge p that’s on a
cycle. Remove p to create a new graph G'.

Since the cycle separates the plane into two regions, the regions
to either side of p must be distinct. When we remove the edge p,
we merge these two regions. So G’ has one fewer regions than G.

Since G’ has n edges, the formula works for G’ by the induction
hypothesis. That is v’ — €' + f'=2. But v = v, ¢’ = e —1, and
f" = f — 1. Substituting, we find that

v—(e—1)+(f-1)=2

>



So

v—e+ f=2



