Another proof by strong induction

- Claim: $\forall n \in \mathbb{N}$, Player 2 can win an (n, n) Nim game
- Proof by induction on n:

Base case (n = 1): Player 1 can only pick one stick, and Player 2 wins by picking the other stick

Inductive step: Let $k \in \mathbb{N}$ such that $\forall m \leq k$, Player 2 can win a (k, k) Nimgame [strong IH]

We need to show that Player 2 can win a (k+1, k+1) Nim game. Suppose Player 1 picks j sticks. Assume WLOG that this is from the first pile, so we are left with a (k+1-j, k+1) game. There are two cases:

Case 1: j = k+1, in which case Player 2 wins the (0, k+1) game by picking j = k+1 sticks from the second pile

Case 2: $1 \le j < k+1$, in which case Player 2 picks j sticks and we are left with a (k+1-j, k+1-j) game, which Player 2 can win (by the strong IH). Hence the statement holds for k+1, which completes the proof by (strong) induction.

Inductive Definitions

- An inductive definition (also called a recursive definition) has two parts:
 - a base case (or base cases)
 - an inductive (or recursive) defintion
- Example 1: The factorial function $!: \mathbb{N} \to \mathbb{N}$ is defined inductively as:

$$0! = 1$$

$$\forall n \geq 1, n! = n \times (n-1)!$$

■ Example 2: The nth Fibonacci number is defined inductively as:

$$F_0 = 0$$

$$F_1 = 1$$

$$\forall n \geq 2$$
, $F_n = F_{n-1} + F_{n-2}$

■ Thus, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, $F_7 = 13$, ... etc.

A Proof with Fibonacci Numbers

- Claim: $\forall n \in \mathbb{N}, F_{3n}$ is even
- Proof by induction on n:

Base case
$$(n = 0)$$
: $F_{3\times 0} = F_0 = 0$, which is even

Inductive step: Let $k \in \mathbb{N}$ such that F_{3k} is even [IH]. We need to show that $F_{3(k+1)}$ is even.

Now
$$F_{3(k+1)}$$
 = F_{3k+3} = F_{3k+2} + F_{3k+1}
 = F_{3k+1} + F_{3k} + F_{3k+1}
 = F_{3k} + $2F_{3k+1}$

By the IH F_{3k} is even, and $2F_{3k+1}$ is also even. Hence $F_{3(k+1)}$ is even, which completes the proof by induction.

A False Proof with Fibonacci Numbers

- "Claim": $\forall n \in \mathbb{N}, F_n \leq 2n$
- "Proof" by induction on n:

Base case
$$(n = 0)$$
: $F_0 = 0 \le 2 \times 0$

Inductive step: Let $k \in \mathbb{N}$ such that $(\forall m \le k, F_m \le 2m)$ [strong IH]. We need to show that $F_{k+1} \le 2(k+1)$.

Now
$$F_{k+1}$$
 = $F_k + F_{k-1}$ $\leq 2k + 2(k-1)$ $\leq 4k - 2$ Error: This applies only when $k+1 \geq 2$, which may not be true! Add a base case $(n = 1)$. We can then assume $k \geq 1$, i.e. $k+1 \geq 2$

... oops, looks like we're stuck!

Fixing the False Proof

- Claim: $\forall n \in \mathbb{N}, F_n < 2^n$
- Proof by induction on n:

Base case
$$(n = 0)$$
: $F_0 = 0 < 2^0$
Base case $(n = 1)$: $F_1 = 1 < 2^1$

Inductive step: Let $k \ge 1$ such that $(\forall m \le k, F_m < 2^m)$ [strong IH]. We need to show that $F_{k+1} < 2^{k+1}$

Now
$$F_{k+1} = F_k + F_{k-1}$$
 (since $k+1 \ge 2$)
 $< 2^k + 2^{k-1}$
 $< 2 \times 2^k = 2^{k+1}$

Hence the statement holds for k+1, which completes the proof by induction.