Another proof involving composition

- If $f: A \to B$ is onto and $g: B \to C$ is onto then $g \circ f: A \to C$ is onto
- Proof: Let $y \in C$. Since g is onto, $\exists z \in B$ such that g(z) = y

Also since f is onto, $\exists x \in A$ such that f(x) = z

Now
$$g \circ f(x) = g(f(x)) = g(z) = y$$

Hence, $\exists x \in A$ such that $g \circ f(x) = y$ and hence $g \circ f$ is onto

- Are the converse statements true?
 - If $g \circ f : A \to C$ is 1-to-1, is $f : A \to B$ 1-to-1 and $g : B \to C$ 1-to-1?
 - If $g \circ f : A \to C$ is onto, is $f : A \to B$ onto and $g : B \to C$ onto?
- (No, for both questions!)

Without loss of generality

- Recall that we sometimes do proofs by cases. Consider an example where two cases are very similar:
- Function $f: A \to B$ is increasing if $\forall x \in A, \forall y \in A, x < y \to f(x) < f(y)$
- Claim: Any increasing function is one-to-one
- Proof: We need to show that $\forall x \in A$, $\forall y \in A$, $f(x) = f(y) \rightarrow x = y$ or equivalently, $\forall x \in A$, $\forall y \in A$, $x \neq y \rightarrow f(x) \neq f(y)$

Consider any x, y in A

Case 1 (x < y): Since f is increasing, f(x) < f(y) and hence $f(x) \ne f(y)$

Case 2 (y < x): Since f is increasing, f(y) < f(x) and hence $f(x) \neq f(y)$

• When the proof of the two cases is virtually identical, we can shorten this by saying: "Without loss of generality (WLOG), assume that x < y" and then prove just one case.

Induction

- This is a technique for proving statements of the form: $\forall n \in \mathbb{N}$, P(n)
- A direct proof would begin "Let $n \in \mathbb{N}$. Now P(n) = ..." i.e., it is a general argument for why P(n) is true no matter what n is
- An inductive proof has two parts:
 - Base case (n = 0): Show that the P(0) is true [usually easy]
 - Inductive case: Show that $\forall k \in \mathbb{N}, P(k) \rightarrow P(k+1)$
- To prove the inductive step, we let $k \in \mathbb{N}$ such that P(k) is true, and use this to conclude that P(k+1) is true
- The assumption that P(k) is true is called the inductive hypothesis (IH)

Example

• Claim:
$$\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

Proof by induction on n:

Base case
$$(n = 0)$$
: We need to show that $P(0)$ is true i.e., $\sum_{i=1}^{0} i = \frac{O(0+1)}{2}$

Now LHS = 0 (empty sum) and RHS = 0. Hence P(0) is true

Inductive step: Let
$$k \in \mathbb{N}$$
 such that $P(k)$ is true i.e.,
$$\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$$

We need to show that $\sum_{i=1}^{k+1} i = \frac{(k+1)((k+1)+1)}{2}$

Now LHS =
$$\sum_{i=1}^{k+1} i = \left(\sum_{i=1}^{k} i\right) + (k+1)$$

= $\frac{k(k+1)}{2} + (k+1) = \frac{(k+1)((k+1)+1)}{2}$ = RHS

Hence P(k+1) is true. The proof is now complete by induction.