Onto vs. One-to-one functions

- $f: A \longrightarrow B$ is onto if $\forall x \in B, \exists y \in A, f(y) = x$
- $f: A \longrightarrow B$ is one-to-one if $\forall x \in A, \ \forall y \in A, \ f(y) = f(x) \rightarrow x = y$
- Examples:

 $\lfloor \ \rfloor$: R \rightarrow Z is onto because $\forall x \in Z$, $\exists y = x \in R$, $\lfloor y \rfloor = x$ \forall : R⁺ \rightarrow R⁺ is one-to-one because $\forall x$, $y \in R^+$, $\forall x = \forall y \rightarrow (\forall x)^2 = (\forall y)^2 \rightarrow x = y$ \forall : R⁺ \rightarrow R⁺ is also onto because $\forall x \in R^+$, $\exists y = x^2 \in R^+$, $\forall y = x$ — Thus \forall : R⁺ \rightarrow R⁺ is bijective

■ Note that $\lfloor \rfloor$: $\mathbb{R} \to \mathbb{Z}$ is *not* one-to-one because $\lfloor 2.5 \rfloor = \lfloor 2 \rfloor$ but $2.5 \neq 2$

Composing two functions

■ Suppose $f: A \to B$ and $g: B \to C$. Then $g \circ f: A \to C$ is defined as $g \circ f(x) = g(f(x))$

```
Example: Consider \sqrt{ }: \mathbb{R}^+ \to \mathbb{R}^+ and \lfloor \rfloor : \mathbb{R}^+ \to \mathbb{Z}^+. Then \sqrt{ } \circ \lfloor \rfloor : \mathbb{R}^+ \to \mathbb{Z}^+ is defined as \sqrt{ } \circ \lfloor \rfloor (x) = \sqrt{(\lfloor x \rfloor)}
```

- Note that order of composition matters: $f \circ g \neq g \circ f$ in general!
- Claim: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both one-to-one, then $g \circ f: A \rightarrow C$ is also one-to-one
- Proof: Suppose $x \in A$, $y \in A$ such that $g \circ f(x) = g \circ f(y)$

```
By definition, g(f(x)) = g(f(y))
Since g is one-to-one, this means that f(x) = f(y)
Since f is one-to-one, this means that x = y, which completes the proof
```