Proving two sets are equal

■ In general to show that X = Y we need to show two things: $X \subseteq Y$ and $Y \subseteq X$

- Occasionally, however, the proof follows directly by logical equivalence:
- Example (DeMorgan's Law): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Proof:
$$\overline{A \cup B} = \{ x \in U \mid x \notin A \cup B \}$$

$$= \{ x \in U \mid \neg(x \in A \cup B) \}$$

$$= \{ x \in U \mid \neg(x \in A \lor x \in B) \}$$

$$= \{ x \in U \mid \neg(x \in A) \land \neg(x \in B) \}$$

$$= \{ x \in U \mid (x \notin A) \land (x \notin B) \}$$

$$= \{ x \in U \mid (x \in \overline{A}) \land (x \in \overline{B}) \}$$

$$= \overline{A} \cap \overline{B}$$

Try one!

- Claim: $A = (A B) \cup (A \cap B)$
- Proof: Let $x \in A$ There are two cases: $x \in B$ and $x \notin B$

If $x \in B$, then $(x \in A) \land (x \in B)$ and hence $x \in A \cap B$ Thus $x \in (A - B) \cup (A \cap B)$ If $x \notin B$, then $(x \in A) \land (x \notin B)$ and hence $x \in (A - B)$ Thus $x \in (A - B) \cup (A \cap B)$

We have shown that $A \subseteq (A - B) \cup (A \cap B)$

Now suppose $x \in (A - B) \cup (A \cap B)$, so $(x \in A - B)$ or $(x \in A \cap B)$ In either case, $x \in A$ and hence $(A - B) \cup (A \cap B) \subseteq A$ This completes the proof.

A proof by contradiction

- Claim: If $(A B) \cup (B A) = (A \cup B)$ then $(A \cap B) = \phi$
- Proof: Suppose $(A \cap B) \neq \phi$ and let $x \in A \cap B$

Then clearly $x \in A \cup B$ and so $x \in (A - B) \cup (B - A)$

Thus $x \in (A - B)$ or $x \in (B - A)$

If $x \in (A - B)$ then $x \in A$ and $x \notin B$, a contradiction

Similarly if $x \in (B - A)$ then $x \in B$ and $x \notin A$, a contradiction

Thus we get a contradiction in every case, and hence $(A \cap B) = \phi$

A proof with power sets

- Claim: $A \subseteq B \leftrightarrow P(A) \subseteq P(B)$
- Proof: Suppose $A \subseteq B$ and let $S \in P(A)$

Then by definition, $S \subseteq A$ By transitivity of \subseteq , $S \subseteq B$ Hence by definition, $S \in P(B)$

Conversely, suppose $P(A) \subseteq P(B)$

Since $A \in P(A)$, $A \in P(B)$ Hence by definition, $A \subseteq B$

Another False Proof

- "Claim": $P(A) \cup P(B) = P(A \cup B)$
- "Proof": Let $S \in P(A) \cup P(B)$. Then $S \in P(A)$ or $S \in P(B)$ So $S \subseteq A$ or $S \subseteq B$ So $S \subseteq A \cup B$ Hence $S \in P(A \cup B)$

Let
$$S \in P(A \cup B)$$

So $S \subseteq A \cup B$
So $\forall x, x \in S \rightarrow x \in A \cup B$
 $\forall x, x \in S \rightarrow x \in A \text{ or } x \in B$
 $S \subseteq A \text{ or } S \subseteq B$
So $S \in P(A) \text{ or } S \in P(B)$
So $S \in P(A) \cup P(B)$