Announcements

- Quiz 1 solutions available
- Graded quizzes will be returned next week

Sets

- A set is an unordered collection of objects
- Three ways to define a set:
 - Describe its contents in mathematical English (e.g., the set of all integers greater than 7)
 - 2. List all the members of the set (e.g., { 8, 9, 10, ... })
 - 3. Use set-builder notation: $\{x \in \mathbf{Z} \mid x > 8\}$ name of variable constraint(s)
- The set of all multiples of 7: $\{x \in \mathbf{Z} : 7 \mid x\}$

Careful with set notation

- The sets {1, 2, 3} and {3, 2, 1} are identical
- {1, 2, 3, 1} and {1, 2, 3} are identical
- The empty set is written as ϕ (not $\{\ \}$)
- A set can contain objects of more than one type:
 - { cow, 6, ! }
 - $\{a, \{a, b\}\}$
 - $-\{Z,Q\}$
- The set $\{\phi\}$ contains one object, the empty set
- The cardinality of set A, written as |A|, is the number of objects in A
 - Don't confuse the notation with absolute value

Subset

- Definition: Set A is a subset of set B if every object in A is in B $A \subseteq B$ if $\forall x, x \in A \rightarrow x \in B$
- Examples: $Z \subseteq Q$, $A \subseteq A$ for any set A
- Claim: For any set B, $\phi \subseteq B$
- A is a proper subset of B $(A \subset B)$ if $A \subseteq B$ and $A \neq B$
- Which of these is correct: If $A \subset B$ then

$$\exists X \in A, \quad X \notin B$$

$$\exists X \in B, \quad X \notin A$$

$$\forall X \in A, \quad X \in B$$

$$\{ X \in B \mid X \notin A \} \neq \emptyset$$

Set Operations

■ Intersection : $A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$

• Union : $A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$

■ Difference : $A - B = \{ x \mid x \in A \text{ and } x \notin B \}$

• Complement : $\overline{A} = \{ x \in U \mid x \notin A \}$

• Examples: If $A \subseteq B$ then

$$A \cap B = A$$

$$A \cup B = B$$

$$A - B = \phi$$

Power set and Cartesian product

- The power set of set A, written as P(A), is the set of all subsets of A
- Examples: $P(\{0, 1\}) = \{ \phi, \{0\}, \{1\}, \{0, 1\} \}$ $P(\phi) = \{ \phi \}$
- If A is a set such that |A| = n, then $|P(A)| = 2^n$ P(A) is sometimes written as 2^A
- The Cartesian product of set A and B, written $A \times B$, is the set of all ordered pairs (x, y) where $x \in A$ and $y \in B$

$$A \times B = \{ (x, y) \mid x \in A \text{ and } y \in B \}$$

 $|A \times B| = |A|.|B|$

■ In general, $A \times B \neq B \times A$