Quiz 1

■ Start time: 9:00am

■ End time: 9:20am

GCD

- Recall that gcd(a, b) is the greatest common divisor of a and b
- For any non-zero integer n, gcd(n, 0) = ngcd(0, 0) is undefined
- If $a \in \mathbb{Z}$, $b \in \mathbb{Z}^+$ and a = bq + r then gcd(a, b) = gcd(r, b)Proof: Suppose gcd(a, b) = kThen $\exists n \in \mathbb{Z}$, a = kn and $\exists m \in \mathbb{Z}$, b = kmSo kn = (km)q + r and hence r = k(n - mq)Thus k is a common divisor of b and r

Suppose gcd(b, r) = t > kSince $t \mid b$ and $t \mid r$ then $t \mid (bq + r)$ So t is a common divisor of a and b, a contradiction (since t > k)

See 1pm lecture notes for a different proof

Euclidean algorithm for GCD

- Corollary: For positive integers a and b, $gcd(a, b) = gcd(b, a \mod b)$
- A 2,300 year old algorithm (pseudocode):

$$x := a$$

$$y := b$$

while
$$y \neq 0$$

$$r := x \mod y$$

$$x := y$$

$$v := r$$

return x

Х	у	$r = x \mod y$
105	252	105
252	105	42
105	42	21
42	21	0
21	0	

Example: gcd(105, 252)

= 21

Recursive algorithm for GCD

- Recursion is a technique for reducing a big problem into one or more similar, smaller, problems
 - with a base case to handle the simplest problems

```
procedure gcd(a, b: positive integers)
r := a mod b
if (r = 0) return b
else return gcd(b, r)
```

а	b	$r = a \mod b$
105	252	105
252	105	42
105	42	21
42	21	0
21	0	

• Example: gcd(105, 252) = 21