Announcements

- Second HW due today
- Quiz 1 is on Wednesday, here, first 15 minutes of class

http://www.cs.uiuc.edu/class/sp10/cs173

Number Theory

- A branch of mathematics focused on integers
- Very important applications in:
 - Cryptography
 - Randomized algorithms and data-structures (e.g., hash tables)
 - Acoustics
- Definition: $a \in \mathbb{Z}$ divides $b \in \mathbb{Z}$ if $\exists n \in \mathbb{Z}$, b = a.n
 - Notation: a | b
 - a is a factor of b
 - b is a multiple of a
- Examples: $-7 \mid 77$, because 77 = (-11)(-7) and $-11 \in \mathbb{Z}$ $7 \mid 0$, because $0 = 0 \times 7$ and $0 \in \mathbb{Z}$
- Does 0 | 7? Does 0 | 0?

Direct proof with divisibility

- $\forall a, b, c \in \mathbb{Z}$, $a \mid b \land a \mid c \rightarrow a \mid (b+c)$
- Proof: Suppose a, b and c are integers such that $a \mid b$ and $a \mid c$

Then, by definition,
$$\exists n \in \mathbf{Z}$$
, $b = an$ and $\exists m \in \mathbf{Z}$, $c = am$

Hence,
$$b + c$$

= $(an + am)$
= $a(n + m)$, where $(n + m) \in \mathbf{Z}$

Hence, $a \mid (b + c)$

■ Similarly: $\forall a, b, c \in \mathbf{Z}$, $a \mid b \rightarrow a \mid bc$ $\forall a, b, c \in \mathbf{Z}$, $a \mid b \wedge b \mid c \rightarrow a \mid c$ (transitivity)

Prime Numbers

■ **Definition**: An integer $p \ge 2$ is prime if the only positive factors of p are 1 and p

$$\forall p \in \mathbb{Z}, p \text{ is prime } \leftrightarrow p \ge 2 \land \forall q \in \mathbb{Z}, (q > 0) \land (q \mid p) \rightarrow (q = 1) \lor (q = p)$$

- **Definition**: An integer $c \ge 2$ is composite if c is not prime
- **Fundamental Theorem of Arithmetic (FTA)**: Every integer $n \ge 2$ can be written as a product of one or more prime factors. This prime factorization is *unique* (except for the order of the prime factors).

Examples:
$$260 = 2 \times 2 \times 5 \times 13$$
 and $17 = 17$

- There are fast algorithms for testing whether a number is prime
- Algorithms for finding factors of composite numbers are slow
 - Basis for cryptography (RSA)

GCD and LCM

- If $c \mid a$ and $c \mid b$ then c is a common divisor of a and b
- The greatest common divisor of a and b = gcd(a, b) is the largest common divisor of a and b
- Similarly if $a \mid c$ and $b \mid c$ then c is a common multiple of a and b
- The least common multiple of a and b = lcm(a, b) is the smallest common multiple of a and b
- Integers a and b are relatively prime if gcd(a, b) = 1

$$lcm(a,b) = \frac{ab}{\gcd(a,b)}$$

Next week: A fast algorithm for computing gcd(a, b)

There are infinitely many prime numbers

- Euclid's Theorem (300 BC): There are infinitely many prime numbers
- Proof by contradiction: Suppose there are only finitely many primes

Let's list them all: p_1 , p_2 , p_3 , ..., p_n

Let
$$q = 1 + \prod_{i=1}^{n} p_i$$

By the FTA, q must have a prime factor

However, none of the prime numbers in our list divides *q* because they all leave remainder 1

So p_1 , p_2 , p_3 , ..., p_n cannot be a list of *all* prime numbers, a contradiction!