Announcements

Second HW released last Friday, due this Friday

http://www.cs.uiuc.edu/class/sp10/cs173

Recap: How to prove/disprove statements

	Prove	Disprove
Existential statements $\exists x, P(x)$	Show <i>P(x)</i> is true for some specific <i>x</i>	Show <i>P(x)</i> is false with a general argument
Universal statements $\forall x, P(x)$	Show <i>P(x)</i> is true with a general argument	Show <i>P(x)</i> is false for some specific <i>x</i>

Examples from last time:

$$-\exists x \in Q, x^2 = 2.25$$

$$- \forall x \in Q, 2x \in Q$$

Today's example: Show that the square of any odd number is odd

$$- \forall k \in \mathbf{Z}_{odd}, k^2 \in \mathbf{Z}_{odd}$$

Unpack/repack definition

- ∀ $k \in \mathbb{Z}$, k is odd $\rightarrow k^2$ is odd

Proving an implication

Definitions of even and odd integers

- Definition: $n \in \mathbb{Z}$ is even if $\exists m \in \mathbb{Z}$, n = 2m
- Definition: $n \in \mathbb{Z}$ is odd if $\exists m \in \mathbb{Z}$, n = 2m + 1
- Important:
 - In definitions: "A if B" $\equiv A \leftrightarrow B$
 - Everywhere else: "A if B" \equiv "if B then A" \equiv B \rightarrow A
- Is zero even or odd?
- Proof that zero is even: We need to show $\exists m \in \mathbb{Z}$, 0 = 2m
 - For m = 0 ∈ Z, 0 = 2m
- Proof that zero is *not* odd: Need to show $\neg(\exists m \in \mathbb{Z}, 0 = 2m + 1)$
 - $\forall m \in \mathbb{Z}, 0 \neq 2m + 1$

$\forall k \in \mathbb{Z}, \ k \text{ is odd} \rightarrow k^2 \text{ is odd}$

■ Proof: Suppose $k \in \mathbb{Z}$ and k is odd

Then, by definition, $\exists m \in \mathbb{Z}, k = 2m + 1$

Now
$$k^2 = (2m + 1)^2$$

= $(2m)^2 + 2(2m) + 1^2$
= $2(2m^2 + 2m) + 1$
= $2p + 1$, where $p = 2m^2 + 2m \in \mathbb{Z}$

Hence, by definition, k^2 is odd

- Observation: We can use this result to show many other results:
 - If k is odd then k^4 is odd, k^8 is odd, k^{16} is odd, ...
- Question: Is the converse true? $\forall k \in \mathbb{Z}, k^2 \text{ is odd } \rightarrow k \text{ is odd}$

Disproving an existential statement

- Disprove the following: $\exists k \in \mathbb{Z}, k^2 + 2k + 1 < 0$
- We need to prove: $\neg(\exists k \in \mathbb{Z}, k^2 + 2k + 1 < 0)$ $\equiv \forall k \in \mathbb{Z}, k^2 + 2k + 1 \ge 0$
- Proof: Let $k \in \mathbf{Z}$

Now
$$k^2 + 2k + 1$$

= $(k + 1)^2$

 ≥ 0 , since the square of any integer is non-negative

Disproving a universal statement

- Definition: $r \in Q$ is the multiplicative inverse of $q \in Q$ if qr = 1
- Disprove: Every rational number has a multiplicative inverse $\forall q \in \mathbf{Q}, \exists r \in \mathbf{Q}, r$ is the multiplicative inverse of q
- We need to prove: $\neg(\forall q \in \mathbf{Q}, \exists r \in \mathbf{Q}, r \text{ is the mult. inverse of } q)$ ≡ $\exists q \in \mathbf{Q}, \forall r \in \mathbf{Q}, r \text{ is not the mult. inverse of } q$
- Complete the proof: Show that q = 0 "works"

Statements with multiple variables

- The product of two even integers is even $\forall j \in \mathbb{Z}, \ \forall k \in \mathbb{Z}, \ (j \text{ is even}) \land (k \text{ is even}) \rightarrow jk \text{ is even}$
- Proof: Let j and k be even integers

Then, by definition,
$$\exists m \in \mathbb{Z}$$
, $j = 2m$
and $\exists n \in \mathbb{Z}$, $k = 2n$

Now
$$jk = (2m)(2n)$$

= 2(2mn)
= 2t, where $t = 2mn \in \mathbb{Z}$

Hence, by definition, jk is even