Announcements

HW 1 released last Friday, due this Friday

http://www.cs.uiuc.edu/class/sp10/cs173

Logical Equivalences

- Definition: Two propositions p and q are logically equivalent if they have the same truth-tables (notation: p = q)
- Examples: $(p \rightarrow q) \equiv (\neg p \lor q)$ $\neg (p \lor q) \equiv (\neg p) \land (\neg q)$ $\neg (p \land q) \equiv (\neg p) \lor (\neg q)$
- Try one: Show that $p \lor (q \land r)$ is logically equivalent to $(p \lor q) \land (p \lor r)$

p	q	r	$p \lor (q \land r)$	$(p \lor q) \land (p \lor r)$
T	T	T	T	T
T	T	F	Т	Т
T	F	T	Т	Т
T	F	F	Т	Т
F	Т	Т	Т	Т
F	Т	F	F	F
F	F	Т	F	F
F	F	F	F	F

Negating Propositions

- DeMorgan's Laws and the fact that $\neg(\neg(p)) \equiv p$ are useful
- Another useful fact: $\neg (p \rightarrow q)$ $\equiv \neg (\neg p \lor q)$ by the earlier equivalence $\equiv (\neg (\neg p)) \land (\neg q)$ by DeMorgan's Law $\equiv p \land (\neg q)$
- Example: Negate: "If it rains then the road gets slippery"
 - "if p then q" is the same as $p \rightarrow q$
 - It rains and the road does not get slippery
- Negate: "If it rains then the road gets slippery and visibility drops"
- It rains and (the road does not get slippery or the visibility does not drop)

Tautologies and Contradictions

- A tautology is a proposition in which all truth-table entries are true (T)
 - Example: $p \vee (\neg p)$
- A contradiction is a proposition in which all truth-table entries are false
 (F)
 - Example: $p \wedge (\neg p)$
- $p \equiv q$ when $p \leftrightarrow q$ is a tautology
- Classify as tautology, contradiction, or neither:
- $\bullet \quad (p \lor q) \lor (\neg q)$
- $p \lor (p \land p)$
- $q \wedge ((\neg q) \vee (p \wedge (\neg q)))$

Predicates and Variables

- A predicate is a statement that becomes a proposition when we substitute values for all variables.
- Examples: " $x^2 < 10$ " or "My current grade in course x is y"
- We use the notation P(x) to denote predicate P with variable x
 - -Q(x, y) denotes a predicate with two variables
- Given a predicate P(x), we can ask two kinds of questions:
 - Is there a value for variable x for which P(x) is true?
 - Is P(x) true for all possible values of x?
- In both cases, an important point will be: what possible values can x take?