Announcements

Look out for HW 1 on the web page later today

http://www.cs.uiuc.edu/class/sp10/cs173

Weights for exams, homeworks, etc. have been posted

Sets

- (Informal) A collection of unique items (no repeats allowed)
- Notation: Use capital letters for sets, lower-case letters for set members x ∈ A means x is a member of set A
 x ∉ A means x is not a member of set A
- Examples:

Z = { ...,
$$-3$$
, -2 , -1 , 0 , 1 , 2 , 3 , ... } all integers
Z⁺ = { 1, 2, 3, ... } positive integers
N = { 0, 1, 2, 3, ... } natural numbers (includes 0)
Q rational numbers
of the form p/q where $p \in \mathbf{Z}$ and $q \in \mathbf{Z}$ and $q \neq 0$
R real numbers
rationals, plus irrationals like π and $\sqrt{2}$
C complex numbers
of the form $(a + bi)$ where a , $b \in \mathbf{R}$, and $i = \sqrt{-1}$

More set notation

- Often, we will be dealing with N or Z, so make sure that you "stay within the set"
 - Example: If $p, q \in \mathbb{N}$ then p/q may not be a natural number
- Related point: Don't use calculus on problems that don't require it
 - Example: Program A needs $(3n-4)^2$ steps to process n numbers, whereas Program B needs 3n-2 steps. Which is faster?
- Range of numbers: The range [a, b] denotes a to b inclusive
 - If you don't want the endpoints, use (a, b)
 - If you don't want one of the endpoints, use (a, b) or [a, b)
- Pairs of numbers: R² denotes the set of all pairs of real numbers
 - Example: $(-3.0, 0.007) \in \mathbb{R}^2$
 - Order matters! $(-3.0, 0.007) \neq (0.007, -3.0)$

Exponentials and logs

- If $n \in \mathbb{Z}^+$ and $b \in \mathbb{R}$, then $b^n = b$ multiplied by itself n times
- Here is how b^n is defined for some other values of n:

$$b^0 = 1$$
 for any $b \neq 0$ (0° is undefined)

$$b^{0.5} = \sqrt{b}$$

$$b^{-1} = 1/b$$

Some rules to manipulate exponents:

$$b^{x}b^{y} = b^{x+y}$$
 $(b^{x})^{y} = b^{xy}$ $(b^{x})^{y} \neq b^{(x^{y})}$

- If b > 1, the "inverse" of b^x is $\log_b x$ (log of x to the base b)
 - Note: In this class, $\log x$ means $\log_2 x$ (base 2 because of binary)

$$\log_b(1/x) = -\log_b x \quad \log_b(xy) = \log_b x + \log_b y \quad \log_b(x^y) = y \log_b x$$

• Change of base formula: $\log_b x = \log_a x \log_b a$

Floor and ceiling

- If $x \in \mathbb{R}$, $\lfloor x \rfloor$ is the *largest* integer smaller than or equal to x i.e., $\lfloor x \rfloor$ is what you get when you round x downwards
- If $x \in \mathbb{R}$, $\lceil x \rceil$ is the *smallest* integer greater than or equal to x i.e., $\lceil x \rceil$ is what you get when you round x upwards

Examples:

$$\lfloor 0.999 \rfloor = 0$$
 $\lceil 1.001 \rceil = 2$
 $\lfloor -0.999 \rfloor =$
 $\lceil -1.001 \rceil =$

Summations

• The sum
$$a_1 + a_2 + ... + a_n = \sum_{i=1}^n a_i$$

- For example, suppose $a_i = 2^i$. Then $\sum_{i=1}^n a_i = \sum_{i=1}^n 2^i = 2^{n+1} 2$ closed form
- Question: What is the closed form for $\sum_{i=0}^{n} 2^{i}$
- A similar notation for product: $\prod_{i=1}^{n} a_i$
- Question: Which of these is the correct closed form for 1 + 2 + ... + n

$$n^2 - 1 \qquad \sum_{i=1}^n i \qquad \frac{n(n+1)}{2}$$