CS 173: Discrete Structures, Spring 2010 Quiz 2 (Wednesday 17 March)

NAME:
NETID:
DISCUSSION DAY/TIME:

This quiz has 2 pages containing 4 questions, totalling 20 points. You have 20 minutes to finish. Showing your work may increase partial credit in case of mistakes.

- 1. (4 points) Mark the following claims as "true" or "false":
 - (a) There is a one-to-one function $f:\{0,1,2\} \to \{a,b\}$ ALTERNATE: There is an onto function $f:\{a,b\} \to \{0,1,2\}$
 - (b) If $f: \mathbb{Z}^+ \to [0,1]$ is defined as $f(n) = \frac{1}{n}$, then f is onto. ALTERNATE: If $f: \mathbb{Z}^+ \to [0,1]$ is defined as $f(n) = \frac{1}{n}$, then f is one-to-one.
 - (c) For functions f, g and h, if f is O(g) and g is O(h) then f is O(h). ALTERNATE: For functions f, g and h, if f is $\Omega(g)$ and g is $\Omega(h)$ then f is $\Omega(h)$.
 - (d) For any $A \subseteq \mathbb{Z}$, there is a $y \in \mathbb{Z}$ such that for all $x \in A$, $x \ge y$.
- 2. (3 points) Suppose that f : A → B is a function. Define what it means for f to be one-to-one. Be specific and precise; do not use words like "unique."
 ALTERNATE: replace one-to-one with onto.

3.	(8 points) Check all the boxes which correctly characterize each function, leaving the other boxes blank. (ALTERNATES: see end.)				
	$f: \mathbb{N} \to \mathbb{N}$ such that $f(n) = 3n^3 + 7(n^2 - n)$	$O(n^3)$: $\Omega(n^2)$:			
		$O(2^n)$: $\Omega(n!)$:			
	$g: \mathbb{N} \to \mathbb{N}$ such that $g(n) = 2\left(\sum_{i=0}^{n} i\right)$	One-to-one: Onto:			
	$h: \mathbb{N}^2 \to \mathbb{Q}$ such that $h(x,y) = \frac{x}{y+1}$	One-to-one: Onto:			
4. (5 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by $f(1) = 1$, $f(2) = 5$, and, for $n \geq 3$, $f(n) = 5f(n-1) - 6f(n-2)$. Fill in the following key pieces of a proof by induction showing that $f(n) = 3^n - 2^n$, for all integers $n \geq 1$. Spell out formulas explicitly; do not use vague references like "the claim" or "the formula."					
	Base case or cases:				
	Inductive hypothesis (i.e. w	hat you assume at the start of the inductive step):			
	Goal of the inductive step	(i.e. the conclusion you must reach at the end of the			
	inductive step):	(i.e. the conclusion you must reach at the cha of the			

Alternate for second function in problem 3							
$h: \mathbb{R} \to \mathbb{R}$ such that $h(x) = \lfloor x \rfloor$	One-to-one:		Onto:				
Alternate for third function in problem 3							
$h: \mathbb{N} \to \mathbb{R}$ such that $h(n) = n \log_2(1+n)$	One-to-one:		Onto:				