CS 173: Discrete Structures, Spring 2010 Quiz 2 Solutions

There were two versions of the exam. This solution sheet contains the answers to all problems from both versions.

- 1. (4 points) Mark the following claims as "true" or "false":
 - (a) There is a one-to-one function $f: \{0,1,2\} \to \{a,b\}$ Solution: False.
 - (b) There is an onto function $f: \{a, b\} \to \{0, 1, 2\}$ Solution: False.
 - (c) If $f: \mathbb{Z}^+ \to [0,1]$ is defined as $f(n) = \frac{1}{n}$, then f is onto. **Solution:** False. For example, $\frac{2}{3}$ is in the co-domain but not in the image.
 - (d) If $f: \mathbb{Z}^+ \to [0,1]$ is defined as $f(n) = \frac{1}{n}$, then f is one-to-one. **Solution:** True. Each input maps onto a different output.
 - (e) For functions f, g and h, if f is O(g) and g is O(h) then f is O(h). Solution: True.
 - (f) For functions f, g and h, if f is $\Omega(g)$ and g is $\Omega(h)$ then f is $\Omega(h)$. Solution:
 - (g) For any $A \subseteq \mathbb{Z}$, there is a $y \in \mathbb{Z}$ such that for all $x \in A$, $x \geq y$. Solution: False. Such a y only exists when A has a lower bound. It won't work if A continues towards negative infinity, e.g. if A contains all the odd integers.
- 2. (3 points) Suppose that $f:A\to B$ is a function. Define what it means for f to be one-to-one (onto in the other version) Be specific and precise; do not use words like "unique."

Solution: One-to-one: For every $x, y \in A$, if f(x) = f(y), then x = y. Or: for every $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$

Onto: For every $y \in B$, there is a $x \in A$ such that f(x) = y.

3. (8 points) Check all the boxes which correctly characterize each function, leaving the other boxes blank. (ALTERNATES: see end.)

$$f: \mathbb{N} \to \mathbb{N}$$
 such that $f(n) = 3n^3 + 7(n^2 - n)$

$$O(n^3)$$
: $\sqrt{ } \Omega(n^2)$:

$$O(2^r$$

 $g: \mathbb{N} \to \mathbb{N}$ such that $g(n) = 2 \left(\sum_{i=0}^{n} i \right)$

One-to-one:

Onto:

 $h: \mathbb{N}^2 \to \mathbb{Q}$ such that $h(x,y) = \frac{x}{y+1}$

One-to-one:

Onto:

 $h: \mathbb{R} \to \mathbb{R}$ such that h(x) = |x|

One-to-one:

Onto:

 $h: \mathbb{N} \to \mathbb{R}$ such that $h(n) = n \log_2(1+n)$

One-to-one:

Onto:

4. (5 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by f(1) = 1, f(2) = 5, and, for $n \geq 3$, f(n) = 5f(n-1) - 6f(n-2). Fill in the following key pieces of a proof by induction showing that $f(n) = 3^n - 2^n$, for all integers $n \geq 1$. Spell out formulas explicitly; do not use vague references like "the claim" or "the formula."

Base case or cases:

Solution: This needs two base cases because the inductive step is reaching back two values.

For n = 1, f(1) = 1 and $3^n - 2^n = 3 - 2 = 1$.

For n = 2, f(1) = 5 and $3^n - 2^n = 9 - 4 = 5$.

Inductive hypothesis (i.e. what you assume at the start of the inductive step):

Solution: Suppose that $f(n) = 3^n - 2^n$ for n = 1, ..., k.

Goal of the inductive step (i.e. the conclusion you must reach at the end of the inductive step):

Solution: $f(k+1) = 3^{k+1} - 2^{k+1}$