CS 173: Discrete Structures, Fall 2009 Quiz 2 (Wednesday 21 September)

to

NAME:	
NETID:	
	ning 4 questions, totalling 20 points. You have 20 minutes y increase partial credit in case of mistakes.
1. (3 points) Mark the following	ng claims as "true" or "false":
(a) If a function $f: \mathbb{R} \to \mathbb{R}$	\mathbb{R} is increasing, then f is one-to-one.
(b) For any real numbers	a and b , with $a > 1$ and $b > 1$, $\log_a(x)$ is $O(\log_b(x))$.
(c) For any set $A, \{\emptyset\} \in \mathbb{F}$	$\mathbb{P}(A)$.
2. (8 points) Check all the boother boxes blank.	xes which correctly characterize each function, leaving the
$f: \mathbb{N} \to \mathbb{N}$ such that $f(n) = 3n^3 - 7n^2 + 37$	$O(n^3)$: $\Omega(7n^3)$:
f(n) = 3n - n + 3n	$O(2^n)$: $\Omega(n!)$:
$g: \mathbb{N} \to \mathbb{N}$ such that $g(n) = n!$	One-to-one: Onto:
$h: \mathbb{Z} \to \mathbb{Z}$ such that $h(n) = n $	One-to-one: Onto:

3.	(4 points) Suppose that f and g are functions whose inputs and outputs are positive real numbers. Define precisely what it means for f to be $O(g)$. Your definition must not use Θ , Ω , or slopes/derivatives.
4.	(5 points) Suppose you are proving that $\sum_{k=1}^{n} k(k+3) = \frac{n(n+1)(n+5)}{3}$ for all positive integers n . Supply the following key pieces of a proof by induction on n . Spell out the details explicitly; don't use vague references like "the claim" or "the formula."
	Base case or cases:
	Inductive hypothesis (i.e. what you assume at the start of the inductive step):
	Goal of the inductive step (i.e. the conclusion you must reach at the end of the inductive step):