CS 173: Discrete Structures, Fall 2009 Quiz 2 Solutions

- 1. (3 points) Mark the following claims as "true" or "false":
 - (a) If a function $f: \mathbb{R} \to \mathbb{R}$ is increasing, then f is one-to-one.

Solution: False. To force f to be one-to-one, you would need it to be strictly increasing. Merely increasing allows the function to have flat sections in its graph.

(b) For any real numbers a and b, with a > 1 and b > 1, $\log_a(x)$ is $O(\log_b(x))$.

Solution: True. Changing the base of $\log x$ changes the output by a factor that doesn't depend on x.

(c) For any set A, $\{\emptyset\} \in \mathbb{P}(A)$.

Solution: False. \emptyset is always a member of the powerset of A, because \emptyset is a subset of A. But $\{\emptyset\}$ will only be in the powerset of \emptyset was a member (not just a subset) of A.

Yup. These were tricky. Short answer theory questions are often harder than they look.

2. (8 points) Check all the boxes which correctly characterize each function, leaving the other boxes blank.

$$f: \mathbb{N} \to \mathbb{N}$$
 such that $f(n) = 3n^3 - 7n^2 + 37$

$$O(n^3)$$
: $\sqrt{} \Omega(7n^3)$: $\sqrt{}$

$$O(2^n)$$
: $\sqrt{ } \Omega(n!)$:

 $g: \mathbb{N} \to \mathbb{N}$ such that q(n) = n!

One-to-one: Onto:

 $h: \mathbb{Z} \to \mathbb{Z}$ such that h(n) = |n|

One-to-one: Onto:

g isn't one-to-one because 0! = 1 = 1!. That's a bit tricky.

3. (4 points) Suppose that f and g are functions whose inputs and outputs are positive real numbers. Define precisely what it means for f to be O(g). Your definition must not use Θ , Ω , or slopes/derivatives.

Solution: f is O(g) if and only if there are real numbers k and C such that $f(x) \le Cg(x)$ for every $x \ge k$.

It's ok to put absolute values around f(x) and g(x), though it's not necessary given the conditions I put on the two functions. It also doesn't matter whether you used \leq vs <, or \geq vs. >.

4. (5 points) Suppose you are proving that $\sum_{k=1}^{n} k(k+3) = \frac{n(n+1)(n+5)}{3}$ for all positive integers n. Supply the following key pieces of a proof by induction on n. Spell out the details explicitly; don't use vague references like "the claim" or "the formula."

Base case or cases: **Solution:** n = 1. Then $\sum_{k=1}^{n} k(k+3) = 1 \cdot 4 = 4$ and $\frac{n(n+1)(n+5)}{3} = \frac{1 \cdot 2 \cdot 6}{3} = 4$.

Inductive hypothesis (i.e. what you assume at the start of the inductive step): Solution: $\sum_{k=1}^{p} k(k+3) = \frac{p(p+1)(p+5)}{3}$ for some positive integer p.

Goal of the inductive step (i.e. the conclusion you must reach at the end of the inductive step): Solution: $\sum_{k=1}^{p+1} k(k+3) = \frac{(p+1)(p+2)(p+6)}{3}$