i
" W pete
7 izi
L T
v, g, TR L
. W, e
i Fa
BhER T , s
£ R
Jent
u
.

CS 173: Discrete Structures

Eric Shaffer
Office Hour: Wed. 12-1, 2215 SC
shaffer1@illinois.edu

AN

{(CC’/V\F [QJ\,({LQ. -
Nﬁnc-w(i C enc N\

An algorithm is a clearly defined, step-by-step
procedure for solving a problem.

Properties of an algorithm:

® Input and output domains are specified.
Each step is precisely described.

Each step is executable in finite time.

Typically applicable to a range of inputs, not
just a specific one.

Must halt with output in finite time.

Determining if a given algorithm halts is an
unsolvable problem. (meaning, we cannot write an
j[algorithm to do it.)

Given a list A of n items: a;,0,,..,a,
-)

Search(A x): report if x in A (i.e. if x = g, for some 1<i < n)
e B

Sort(A): reorder A so that q, <a, <.... <a

n

...--""'_"—H-._'—._h
Analyze the running time

® We count the number of instructions executed
® Asa function of input size

kf/l\ Use Big-O (We disregard constants)
wo types of analysis:

1. Worst case analysis *
2. Average case analysis ¢

Linear search
Input: an unsorted list of integers a;, a,, ... a, and integer x
Output: position i where q; = X, if x is in the I|s1'

i:=1 C

position:=0

MH} and (x = @ C/(\:)
i:=i¥1 _ éa C{\)

L;jn}then position:=i @ C/ L\ —

{the variabkle p051tlon is locatlon of x in the list}

{position=0 means x isn’t in the list}

Count the instructions executed in the worst case

How long does the "linear search algorithm” take?
// —_—
uppose the data is (2, 8, 3,9,12,1, 6, 4,10, 7)

Count the number of comparisons if we're looking for "4":

How about "2"? "

The running i gorithm depends on the particular
input to the problem. In this case we have two different
complexity measures:

W Worst case complexity - running time on worst input
W Average case - average running time among all inputs

Worst case for linear search is time n. O(n)

In the average case, how long does the “linear search algorithm” take? — | {

Assume that the number x is in the list, each spot equg@f likely 2 2

Average case for linear search is ti 2 L
(1+2+.+n)/n = n(n+1)/2n :[(n+1)/2. 1L /L

[— |

If we allow the number x to not be in the list
-- we need to know the probability of it not being in the list

-- but in the end, the average case run time will still be O(n)

How long does the "binary search algorithm” take? L

Binary search

Input: a sorted array of integers qy, a,, ... a, and an integer x

Output: position i where q, = x, if x is in the list o) U

O (1) " &

m := I_{i + j]lf2J {midpt of range (i, 7J)} :h% _)L‘,
if x > a, then 1 :=m + 1

else position:=0 {not in list} ()

The main point of showing you this code is
to remind you that the range is cut in half
at every iteration.

i =1
J = nmn
while (1 < 7)
m := [{i + jJIEJ {midpt of range (i,])}

if x > a, then 1 = m + 1
else] 1= m
if ® = a; then pesiticon:=i

else position:=0 {not in list}

Binary search 4,7,8,10,12,14,20 for 8:

How long does the "binary search algorithm” take?

If nis a power of 2, n = 2K, Ther'uﬁons occur.
— -

K
n o=l

If nis not a power of 2, let k be the number so that 2k < n < 2k!
imagine that the array has 2! elements. Then k+1 < Z0(lg n)

