14th of October, 2025

1. Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined recursively below.

$$f(n) := \begin{cases} 2 & \text{if } n = 0\\ 3 & \text{if } n = 1\\ 3f(n-1) - 2f(n-2) & \text{if } n \geqslant 2 \end{cases}$$

Prove that $f(n) = 2^n + 1$ for all $n \in \mathbb{N}$.

2. Consider the function $g:\mathbb{N}_+\to\mathbb{N}_+$ defined recursively below.

$$g(1) := 1$$

 $g(z) := 2g(z-1) + 3$ for all $z \in \mathbb{N} - \{0, 1\}$

Find a closed form for g and prove your conjecture by induction.

3. When we analyse the binary_search algorithm, we might describe the amount of computational work it takes to search through a list with the recursive function $T: \mathbb{N}_+ \to \mathbb{N}_+$ given below.

$$T(n) := \begin{cases} 4 & \text{if } n = 1\\ T(n/2) + 4 & \text{if } n \geqslant 2 \end{cases}$$

Find a closed form for T and prove your conjecture by induction.

4. When we analyse merge_sort, we might describe the amount of computational work it takes to sort a list with the recursive function $T: \mathbb{N}_+ \to \mathbb{N}_+$ given below.

$$T(n) := \begin{cases} 0 & \text{if } n = 1\\ 2T(n/2) + n & \text{if } n \geqslant 2 \end{cases}$$

Find a closed form for T and prove your conjecture by induction.