- 1. Consider the function $f: \mathbb{R} \times \mathbb{N} \to \mathbb{Z}$ given by $f(x,y) \coloneqq \left\lfloor \frac{x}{y+1} \right\rfloor$.
 - (a) We will show that f is *not* one-to-one.

Proof. Consider the ordered pairs $(1,0) \in \mathbb{R} \times \mathbb{N}$ and $(1.5,0) \in \mathbb{R} \times \mathbb{N}$ and observe.

$$f(1,0) = \left\lfloor \frac{1}{0+1} \right\rfloor = \left\lfloor 1 \right\rfloor = 1 = \left\lfloor 1.5 \right\rfloor = \left\lfloor \frac{1.5}{0+1} \right\rfloor = f(1.5,0)$$

Q.E.D.

However, $(1,0) \neq (1.5,0)$ because $1 \neq 1.5$. Therefore, f is not one-to-one.

(b) We will show that f is onto.

Proof. Let $y \in \mathbb{Z}$ and note that $(y,0) \in \mathbb{R} \times \mathbb{N}$ because $\mathbb{Z} \subseteq \mathbb{R}$. Observe that $f(y,0) = \lfloor y/0 + 1 \rfloor = \lfloor y \rfloor$. Since y is an integer, we can see that $\lfloor y \rfloor = y$, implying f(y,0) = y. Therefore, f is onto.

2. Let $f : \mathbb{N} \to \mathbb{N}$ be a one-to-one function.

Consider the function $g: \mathbb{N} \times \mathbb{N} \to \mathbb{Z} \times \mathbb{Z}$ given by g(x,y) := (f(x) - y, f(x) + y).

(a) We will show that *g* is one-to-one.

Proof. Let $(a,b) \in \mathbb{N} \times \mathbb{N}$ and $(x,y) \in \mathbb{N} \times \mathbb{N}$. Assume that g(a,b) = g(x,y). By definition, this implies (f(a) - b, f(a) + b) = (f(x) - y, f(x) + y), yielding the following two equalities.

$$f(a) - b = f(x) - y$$

$$f(a) + b = f(x) + y$$

We then have (f(a) - b) + (f(a) + b) = (f(x) - y) + (f(x) + y), from which we derive the following.

$$(f(a) - b) + (f(a) + b) = (f(x) - y) + (f(x) + y) \Rightarrow 2f(a) + (b - b) = 2f(x) + (y - y)$$
$$\Rightarrow 2f(a) = 2f(x)$$
$$\Rightarrow f(a) = f(x)$$

Because f is one-to-one, we now know a = x. Since f(a) + b = f(x) + y, we can use the intermediate result f(a) = f(x) to get b = y. We therefore conclude (a, b) = (x, y), showing f is one-to-one. Q.E.D.

(b) We will show that *g* is *not* onto.

Proof. Consider the ordered pair $(0,-1) \in \mathbb{Z} \times \mathbb{Z}$. Since the codomain of f is \mathbb{N} , we know that, $\forall n \in \mathbb{N}, f(n) \geqslant 0$ and that $\forall n \in \mathbb{N}, \forall m \in \mathbb{N}, f(n) + m \geqslant 0$. We then can *not* have f(n) + m = -1 for any $n, m \in \mathbb{N}$, showing $\forall n, m \in \mathbb{N}, g(n, m) = (f(n) - m, f(n) + m) \neq (0, -1)$. Thus, g is not onto.

- 3. Consider the function $h: \mathbb{Z} \to \mathbb{N}$ given by $h(x) = \begin{cases} 2x & \text{if } x \geqslant 0 \\ -2x 1 & \text{if } x < 0 \end{cases}$.
 - (a) We will show *h* is one-to-one.

Proof. Let $a, b \in \mathbb{N}$ and assume h(a) = h(b). We will take four cases.

Case 1:

Assume $a \ge 0$ and $b \ge 0$. Then, by definition, h(a) = 2a = 2b = h(b), so that a = b.

Case 2:

Assume $a \ge 0$ and b < 0. Then, h(a) = 2a and h(b) = -2b - 1. Notice that h(a) is even, while h(b) is odd; this implies $h(a) \ne h(b)$. However, this contradicts our earlier knowledge that h(a) = h(b). Having derived a contradiction, the assumption that $a \ge 0$ and b < 0 must be false, making this case irrelevant to our proof.

Case 3:

Assume a < 0 and $b \ge 0$. Then, h(a) = -2a - 1 and h(b) = 2b. Notice that h(a) is odd, while h(b) is even; this implies $h(a) \ne h(b)$. However, this contradicts our earlier knowledge that h(a) = h(b). Having derived a contradiction, the assumption that a < 0 and $b \ge 0$ must be false, making this case irrelevant to our proof.

Case 4:

Assume a < 0 and b < 0. Then, h(a) = -2a - 1 = -2b - 1 = h(b), implying -2a = -2b, so that a = b.

We therefore know that a = b, allowing us to conclude that h is one-to-one.

Q.E.D.

Q.E.D.

(b) We will show *h* is onto.

Proof. Let $y \in \mathbb{N}$. We take two cases.

Case 1:

Assume y is even, so that y=2k for some $k\in\mathbb{Z}$ by definition. Since $y\in\mathbb{N}$, we know $2k\geqslant 0$, implying $k\geqslant 0$. We can then observe that f(k)=2k=y by definition.

Case 2:

Assume y is odd, so that y = 2k + 1 for some $k \in \mathbb{Z}$. Since $y \in \mathbb{N}$, we can make the following derivation.

$$y \geqslant 0 \Rightarrow 2k+1 \geqslant 0$$
$$\Rightarrow 2k > 0$$
$$\Rightarrow k > 0$$
$$\Rightarrow -k < 0$$
$$\Rightarrow -k - 1 < k < 0$$

We then have f(-k-1) = -2(-k-1) - 1 = 2k+2-1 = 2k+1 = y by definition.

Thus, in both cases, we have found $\exists z \in \mathbb{Z}$, f(z) = y. Therefore, f is onto.