23" of September, 2025

1. Consider the function f : R x N — Z given by f(x,y) := b—_’ﬁlJ

(a) We will show that f is not one-to-one.

Proof. Consider the ordered pairs (1,0) € R x N and (1.5,0) € R x N and observe.

£(1,0) = L)LJ 1] =1=[15] = L)lflJ — £(15,0)

However, (1,0) # (1.5,0) because 1 # 1.5. Therefore, f is not one-to-one. Q.E.D.

(b) We will show that f is onto.

Proof. Lety € Z and note that (y,0) € R x N because Z C R. Observe that f(y,0) = [v/0+1] = |y].
Since y is an integer, we can see that |y| =y, implying f(y,0) = y. Therefore, f is onto. Q.E.D.
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2. Let f : N — N be a one-to-one function.
Consider the function g : N x N — Z x Z given by g(x,y) == (f(x) —y, f(x) +y).

(a) We will show that g is one-to-one.

Proof. Let (a,b) € Nx Nand (x,y) € N x N. Assume that g(a,b) = g(x,y). By definition, this implies
(f(a) = b, f(a) +b) = (f(x) —y, f(x) +y), yielding the following two equalities.

fla) =b=f(x) —y
y

We then have (f(a) —b) + (f(a) +b) = (f(x) —y) + (f(x) +y), from which we derive the following.

(f(a) =b) + (f(a) +b) = (f(x) —y) + (f(x) +y) = 2f(a) + (b —b) =2f(x) + (y — ¥)
= 2f(a) = 2f(x)
= f(a) = f(x)

Because f is one-to-one, we now know a = x. Since f(a) + b = f(x) + y, we can use the intermediate
result f(a) = f(x) to get b = y. We therefore conclude (a,b) = (x,y), showing f is one-to-one.  Q.E.D.

(b) We will show that g is not onto.

Proof. Consider the ordered pair (0,—1) € Z x Z. Since the codomain of f is N, we know that,
Vn €N, f(n) > 0and that Vi € N,Vm € N, f(n) + m > 0. We then can not have f(n) +m = —1 for any
n,m € N, showing ¥n,m € N,g(n,m) = (f(n) —m, f(n) +m) # (0, —1). Thus, g is not onto. Q.E.D.
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. . . 2x ifx>0
3. Consider the function # : Z — N given by h(x) = .
—2x—1ifx <0

(a) We will show F is one-to-one.

Proof. Leta,b € N and assume h(a) = h(b). We will take four cases.

Case 1:
Assume a > 0 and b > 0. Then, by definition, h(a) = 2a = 2b = h(b), so thata = b.

Case 2:

Assume a > 0 and b < 0. Then, h(a) = 2a and h(b) = —2b — 1. Notice that h(a) is even, while h(b) is odd;
this implies h(a) # h(b). However, this contradicts our earlier knowledge that h(a) = h(b). Having derived a
contradiction, the assumption that 4 > 0 and b < 0 must be false, making this case irrelevant to our proof.

Case 3:

Assume g < 0 and b > 0. Then, h(a) = —2a —1 and h(b) = 2b. Notice that h(a) is odd, while h(b) is even;
this implies h(a) # h(b). However, this contradicts our earlier knowledge that h(a) = h(b). Having derived a
contradiction, the assumption that 2 < 0 and b > 0 must be false, making this case irrelevant to our proof.

Case 4:
Assume a < 0 and b < 0. Then, h(a) = —2a —1 = —2b — 1 = h(b), implying —2a = —2b, so thata = b.

We therefore know that a = b, allowing us to conclude that / is one-to-one. Q.E.D.

(b) We will show h is onto.

Proof. Let y € N. We take two cases.

Case 1:
Assume y is even, so that y = 2k for some k € Z by definition. Since y € N, we know 2k > 0, implying k > 0.
We can then observe that f (k) = 2k = y by definition.

Case 2:
Assume y is odd, so that y = 2k + 1 for some k € Z. Since y € N, we can make the following derivation.

y=>0=2k+12>0
= 2k>0
= k>0
= —k<0
= —-k-1<k<0

We then have f(—k—1) = —=2(—k—1) =1 =2k +2—1 =2k +1 = y by definition.

Thus, in both cases, we have found 3z € Z, f(z) = y. Therefore, f is onto. Q.E.D.
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