1. Let $A := \{x \in \mathbb{N} \mid \exists n \in \mathbb{N}, (n > 1) \land (x = 2^n)\}$ and $B := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$. Show that $A \subseteq B$.

Proof. Let $x \in A$. This tells us $x \in \mathbb{N}$ and there exists $n \in \mathbb{N}$ such that n > 1 and $x = 2^n$ by definition. We can now observe the following.

$$x = 2^n = 2 \cdot 2^{n-1}$$

Since $n \in \mathbb{N}$ and n > 1, we can see $n - 1 \in \mathbb{N}$, so that $2^{n-1} \in \mathbb{Z}$. This lets us deduce $2 \mid x$ by definition. Since x = x - 0, this means $2 \mid x - 0$, so that $x \equiv 0 \pmod{2}$ by definition. Therefore, $x \in B$ by definition. We can then conclude that $A \subseteq B$.

2. Show that, for any sets A, B, and C, we have $(A - B) \times C \subseteq (A \times C) - (B \times C)$.

Proof. Let A, B, and C be arbitrary sets and let $(x,y) \in (A-B) \times C$, so that $x \in A-B$ and $y \in C$ by definition. Since $x \in A-B$, we know $x \in A$ and $x \notin B$. Noticing that $x \in A$ and $y \in C$, we can deduce $(x,y) \in A \times C$. Now, observe the following chain of reasoning.

$$x \notin B \Rightarrow (x \notin B) \lor (y \notin C)$$

 $\Rightarrow \neg(x \in B \land y \in C)$
 $\Rightarrow (x,y) \notin B \times C$

As a result, we have $(x,y) \notin B \times C$. Combining this with our previous deduction, we can conclude that $(x,y) \in (A \times C) - (B \times C)$. Therefore, $(A-B) \times C \subseteq (A \times C) - (B \times C)$ as desired. Q.E.D.

3. Let $A := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$ and $B := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{4}\}$. Disprove $A \subseteq B$.

Proof. Consider the integer $2 \in \mathbb{Z}$ and observe that $2 - 0 = 2 \cdot 1$. Since $1 \in \mathbb{Z}$, this means $2 \mid 2 - 0$, so that $2 \equiv 0 \pmod{2}$, so that $2 \in A$ by definition.

We will now show that $\forall x \in \mathbb{Z}, 4x \neq 2$ by taking cases. Let $z \in \mathbb{Z}$.

Case 1:

Suppose z < 0. Since $z \in \mathbb{Z}$, this implies $z \leq -1$, so we have $4z \leq -1 < 2$. Thus, $4z \neq 2$.

Case 2.

Suppose z = 0. Then, $4z = 4 \cdot 0 = 0 \neq 2$.

Case 3:

Suppose z > 0. Since $z \in \mathbb{Z}$, this implies $z \ge 1$, so we have $4z \ge 4 \cdot 1 = 4 > 2$. Thus, $4z \ne 2$.

Thus, in all cases, we obtained $4z \neq 2$. We therefore know $\forall x \in \mathbb{Z}, 4x \neq 2$, which is equivalent to $4 \nmid 2$, meaning $2 \not\equiv 0 \pmod{4}$ by definition. This tells us that $2 \not\in B$.

Since $2 \in A$ and $2 \notin B$, we conclude $\exists x, x \in A \land x \notin B$ as desired.

Q.E.D.