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1. Let A :=
{

x ∈ N
∣∣ ∃n ∈ N, (n > 1) ∧ (x = 2n)

}
and B :=

{
x ∈ Z

∣∣ x ≡ 0 (mod 2)
}

. Show that A ⊆ B.

Proof. Let x ∈ A. This tells us x ∈ N and there exists n ∈ N such that n > 1 and x = 2n by definition. We
can now observe the following.

x = 2n = 2 · 2n−1

Since n ∈ N and n > 1, we can see n − 1 ∈ N, so that 2n−1 ∈ Z. This lets us deduce 2 | x by definition.
Since x = x − 0, this means 2 | x − 0, so that x ≡ 0 (mod 2) by definition. Therefore, x ∈ B by definition.
We can then conclude that A ⊆ B. q.e.d.

2. Show that, for any sets A, B, and C, we have (A − B)× C ⊆ (A × C)− (B × C).

Proof. Let A, B, and C be arbitrary sets and let (x, y) ∈ (A − B)× C, so that x ∈ A − B and y ∈ C by
definition. Since x ∈ A − B, we know x ∈ A and x ̸∈ B. Noticing that x ∈ A and y ∈ C, we can deduce
(x, y) ∈ A × C. Now, observe the following chain of reasoning.

x ̸∈ B ⇒ (x ̸∈ B) ∨ (y ̸∈ C)

⇒ ¬(x ∈ B ∧ y ∈ C)

⇒ (x, y) ̸∈ B × C

As a result, we have (x, y) ̸∈ B × C. Combining this with our previous deduction, we can conclude that
(x, y) ∈ (A × C)− (B × C). Therefore, (A − B)× C ⊆ (A × C)− (B × C) as desired. q.e.d.

3. Let A :=
{

x ∈ Z
∣∣ x ≡ 0 (mod 2)

}
and B :=

{
x ∈ Z

∣∣ x ≡ 0 (mod 4)
}

. Disprove A ⊆ B.

Proof. Consider the integer 2 ∈ Z and observe that 2 − 0 = 2 · 1. Since 1 ∈ Z, this means 2 | 2 − 0, so that
2 ≡ 0 (mod 2), so that 2 ∈ A by definition.

We will now show that ∀x ∈ Z, 4x ̸= 2 by taking cases. Let z ∈ Z.

Case 1:
Suppose z < 0. Since z ∈ Z, this implies z ⩽ −1, so we have 4z ⩽ −1 < 2. Thus, 4z ̸= 2.

Case 2:
Suppose z = 0. Then, 4z = 4 · 0 = 0 ̸= 2.

Case 3:
Suppose z > 0. Since z ∈ Z, this implies z ⩾ 1, so we have 4z ⩾ 4 · 1 = 4 > 2. Thus, 4z ̸= 2.

Thus, in all cases, we obtained 4z ̸= 2. We therefore know ∀x ∈ Z, 4x ̸= 2, which is equivalent to 4 ∤ 2,
meaning 2 ̸≡ 0 (mod 4) by definition. This tells us that 2 ̸∈ B.

Since 2 ∈ A and 2 ̸∈ B, we conclude ∃x, x ∈ A ∧ x ̸∈ B as desired. q.e.d.

1 / 1


