9th of September, 2025 1. Let $A := \{x \in \mathbb{N} \mid \exists n \in \mathbb{N}, (n > 1) \land (x = 2^n)\}$ and $B := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$. Show that $A \subseteq B$. 9^{th} of September, 2025 2. Show that, for any sets A, B, and C, we have $(A - B) \times C \subseteq (A \times C) - (B \times C)$. 9th of September, 2025 3. Let $A := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$ and $B := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{4}\}$. Disprove $A \subseteq B$.