9th of September, 2025

1. Let $A := \{x \in \mathbb{N} \mid \exists n \in \mathbb{N}, (n > 1) \land (x = 2^n)\}$ and $B := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$. Show that $A \subseteq B$.

 9^{th} of September, 2025

2. Show that, for any sets A, B, and C, we have $(A - B) \times C \subseteq (A \times C) - (B \times C)$.

9th of September, 2025

3. Let $A := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\}$ and $B := \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{4}\}$. Disprove $A \subseteq B$.