0.1 Introduction

An interesting result from number theory is that every positive rational number can be written as a *simple finite continued fraction* of the form given below.

$$q = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\cdot \cdot + \frac{1}{a_\ell}}}} = [a_0; a_1, a_2, ..., a_\ell]$$

In the above representation, each positive rational number $q \in \mathbb{Q}_+$ has an associated finite sequence of *coefficients* $a_0, a_1, a_2, ..., a_\ell$ where $a_0 \in \mathbb{N}$ and $a_1, a_2, ..., a_\ell \in \mathbb{N}_+$.

$$\frac{2}{1} = 1 + \frac{1}{1}$$
 [1; 1]
$$\frac{2}{3} = 0 + \frac{1}{1 + \frac{1}{1+1}}$$
 [0; 1, 1, 1]
$$\frac{415}{93} = 4 + \frac{1}{2 + \frac{1}{6 + \frac{1}{6+1}}}$$
 [4; 2, 6, 6, 1]

We can normalize¹ the representation $[a_0; a_1, a_2, ..., a_\ell]$ of a positive rational number by additionally restricting $\ell > 0$ and $a_\ell = 1$. Taking this as inspiration, we recursively define a bijection $f: \mathbb{N}_+ \to \mathbb{Q}_+$ based on alternating addition and reciprocation.

$$f(1)\coloneqq 1$$

$$f(2n)\coloneqq 1+f(n)$$

$$f(2n+1)\coloneqq \frac{1}{1+f(n)}$$

The output of f on the first few positive natural numbers is shown below.

$$f(1) = 1 = \frac{1}{1} + \frac{1}{1} = \frac{2}{1}$$

$$f(2) = 1 + f(1) = \frac{1}{1} + \frac{1}{1} = \frac{2}{1}$$

$$f(3) = \frac{1}{1 + f(1)} = \frac{1}{1 + 1} = \frac{1}{2}$$

$$f(4) = 1 + f(2) = \frac{1}{1} + \frac{2}{1} = \frac{3}{1}$$

$$f(5) = \frac{1}{1 + f(2)} = \frac{1}{1 + 2} = \frac{1}{3}$$

$$f(6) = 1 + f(3) = 1 + \frac{1}{2} = \frac{3}{2}$$

$$f(7) = \frac{1}{1 + f(3)} = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

$$f(8) = 1 + f(4) = 1 + \frac{3}{1} = \frac{4}{1}$$

 $[a_0;a_1,a_2,...,a_\ell]$ is a compact modern notation for expressing (finite) simple continued fractions. With this compact notation, we say that ℓ is the *length* of the continued fraction and that $a_0,a_1,a_2,...,a_\ell$ are its coefficients. The first coefficient a_0 is the *integral coefficient*, and the rest are fractional coefficients.

¹An interesting thing to note is that every positive rational number has exactly two representations as a finite simple continued fraction: one in which the last coefficient (after a_0) is 1, and one in which the last coefficient (after a_0 , if it exists) is nonzero. We can therefore normalize the continued fraction representation by requiring that there exist at least one coefficient after a_0 and that the *last* coefficient a_n is 1. With this normalization, each positive rational number will have a unique representation as a continued fraction.

1 Injectivity

Let's prove that f is one-to-one by induction on its input. To be clear, we are proving that $(\forall m \in \mathbb{N}_+)(f(n) = f(m) \Rightarrow n = m)$ for all $n \in \mathbb{N}_+$ by induction on n.

Proof. First, observe that f(x)>0 for all $x\in\mathbb{N}_+$ because the codomain of f is \mathbb{Q}_+ . This implies f(2x)=1+f(x)>1 and $f(2x+1)=\frac{1}{1+f(x)}<1$ for all $x\in\mathbb{N}_+$.

Basis Step:

Let $m\in\mathbb{N}_+$ and assume f(1)=f(m), so that f(m)=1. Towards a contradiction, suppose $m\neq 1$. If m is even, then $f(m)=1+f({}^m\!/{}_2)>1$, contradicting the fact that f(m)=1. However, if m is odd, then $f(m)=\frac{1}{1+f(\frac{m-1}{2})}<1$, again contradicting f(m)=1. $\not\subset$ Therefore, we know m=1.

$^{2}: \forall x \in \mathbb{N}_{+}, f(x) > 0.$ $^{3}: \forall x \in \mathbb{N}_{+}, f(x) > 0.$

Inductive Step:

Let $k \in \mathbb{N}_+$. Assume, for all $i, j \in \mathbb{N}_+$, that if i < k and f(i) = f(j), then i = j.⁴ Now, let $m \in \mathbb{N}_+$ and assume f(k) = f(m).

⁴This statement is our inductive hypothesis.

Case 1.

Suppose k is even, so that $f(k)=1+f\left(\frac{k}{2}\right)$. Towards a contradiction, suppose m is odd, so that $f(m)=\frac{1}{1+f\left(\frac{m-1}{2}\right)}$ by definition.⁵ This implies $1+f\left(\frac{k}{2}\right)=\frac{1}{1+f\left(\frac{m-1}{2}\right)}$, which we can rearrange to produce the following expression.

⁵Since
$$m$$
 is odd, we know $m = 2a + 1$ for some $a \in \mathbb{Z}$. This implies $\frac{m-1}{2} = a \in \mathbb{Z}$.

$$\left(1+f\left(\frac{k}{2}\right)\right)\left(1+f\left(\frac{m-1}{2}\right)\right)=1$$

However, $(1+f(\frac{k}{2}))(1+f(\frac{m-1}{2})) > 1$ because f is strictly positive. $\not\in$

Therefore, m is even. This implies $f(m)=1+f\left(\frac{m}{2}\right)$. Since $1+f\left(\frac{k}{2}\right)=1+f\left(\frac{m}{2}\right)$, we then have $f\left(\frac{k}{2}\right)=f\left(\frac{m}{2}\right)$. Applying the *inductive hypothesis*, we get $\frac{k}{2}=\frac{m}{2}$, so that k=m as desired.

Case 2:

Suppose k is odd, so $f(k) = \frac{1}{1+f(\frac{k-1}{2})}$. Towards a contradiction, suppose that m is even, so that $f(m) = 1 + f(\frac{m}{2})$. Through similar reasoning as in the previous case, we can see the following.

$$\left(1 + f\left(\frac{k-1}{2}\right)\right)\left(1 + f\left(\frac{m}{2}\right)\right) = 1$$

Just as before, we know $\left(1+f\left(\frac{k-1}{2}\right)\right)\left(1+f\left(\frac{m}{2}\right)\right)>1$ because f is strictly positive. \not

Therefore, m is odd, implying $f(m)=1/\left(1+f\left(\frac{m-1}{2}\right)\right)$. Recalling that f(k)=f(m), we obtain $1+f\left(\frac{k-1}{2}\right)=1+f\left(\frac{m-1}{2}\right)$, implying that $f\left(\frac{k-1}{2}\right)=f\left(\frac{m-1}{2}\right)$. Applying the inductive hypothesis then produces $\frac{k-1}{2}=\frac{m-1}{2}$, so that k=m as desired.

Therefore, in either case, we can see that k=m, finishing our inductive step, and concluding our proof that f is injective. QED

2 Surjectivity

Recall that each positive rational number $q \in \mathbb{Q}_+$ can be written as a continued fraction of the form $a_0 + \frac{1}{a_1 + \frac{1}{... + \frac{1}{a_\ell}}}$ where $a_0 \in \mathbb{N}$ and $a_1, ..., a_\ell, \ell \in \mathbb{N}_+$ and $a_\ell = 1$.

To prove f is onto, we will perform induction on $\sum_{i=0}^n a_i$, the sum of the coefficients. In order to have a hope of accomplishing this properly, we need to be clear about precisely what it is that we are proving. We will show, for every $n \in \mathbb{N}_+$, for every $q \in \mathbb{Q}_+$, if $q = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + a_3}}$ such that $\sum_{i=0}^{\ell} a_i = n$, then $(\exists x \in \mathbb{N}_+)(f(x) = q)$.

Proof. We proceed by induction on the sum of the coefficients in the continued fraction representation of a given positive rational number.

Basis Step:

Let $q \in \mathbb{Q}_+$ and suppose $q = a_0 + \frac{1}{a_1 + \frac{1}{1 + \frac{1}{a_\ell}}}$ such that $\sum_{i=0}^\ell a_i = 1$, where $a_0 \in \mathbb{N}$ and $a_1, ..., a_\ell, \ell \in \mathbb{N}_+$ and $a_\ell = 1$. Because there must be at least two coefficients in the

continued fraction, and since $a_i\geqslant 1$ for each $i\geqslant 1$, we can use the fact that $\sum_{i=0}^\ell a_i=1$ to deduce that $\ell=2$ and thus $a_0=0$ and $a_1=1$. As a result, we know q=1, and we can therefore conclude f(1)=1=q.

Inductive Step:

Let $k\in\mathbb{N}_+$ and suppose, for any $j\in\mathbb{N}_+$ such that $j\leqslant k$, for any $q\in\mathbb{Q}_+$ for which we have $q=a_0+\frac{1}{a_1+\frac{1}{\ddots +\frac{1}{a_\ell}}}$ with $a_0\in\mathbb{N}$ and $a_1,...,a_\ell,\ell\in\mathbb{N}_+$ and $a_\ell=1$, that if $\sum_{i=0}^\ell a_i=j$,

then there exists $x \in \mathbb{N}_+$ such that f(x) = q.6

Now that the inductive hypothesis is established, let q be a positive rational number such that $q=a_0+\frac{1}{a_1+\frac{1}{a_2+\frac{1}{a_\ell}}}$ where $a_0\in\mathbb{N}$ and $a_1,a_2,...,a_\ell,\ell\in\mathbb{N}_+$ and $a_\ell=1$ with the

property that $\sum_{i=0}^{\ell} a_i = k+1$. We now define the positive rational $\tilde{q} \in \mathbb{Q}_+$ as follows.

$$\tilde{q}=(a_1-1)+\frac{1}{a_2+\frac{1}{\cdot\cdot+\frac{1}{a_\ell}}}$$

Since $(a_1-1)+a_2+...+a_\ell < a_0+a_1+a_2+...+a_\ell = k+1$, we know that there exists $\tilde{x} \in \mathbb{N} + \text{such that } f(\tilde{x}) = \tilde{q}$ by the *inductive hypothesis*. Observe.

$$f(2\tilde{x}+1) = \frac{1}{f(\tilde{x})} = \frac{1}{1+\tilde{q}} = \frac{1}{1+(a_1-1)+\frac{1}{a_2+\frac{1}{\cdot\cdot+\frac{1}{a_\ell}}}} = \frac{1}{a_1+\frac{1}{a_2+\frac{1}{\cdot\cdot+\frac{1}{a_\ell}}}}$$

Observe again.

$$f(2^{a_0}(2\tilde{x}+1)) = a_0 + f(2\tilde{x}+1) = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_1 + + \frac{1}{a_1 + + \frac{1}{a_1 + \frac{$$

We have therefore found that $2^{a_0}(2\tilde{x}+1)$ is a preimage for q under f as desired.

This concludes the proof by induction that f is surjective.

I would like to thank the absolute chads of section CL1 and CL2 of CS173 (whose names will be added here as soon as I track them down) for their contributions to a special case of an earlier version of this result, and I would like to thank Grace Sun for her insight that significantly simplified this proof.

⁶This statement is our inductive hypothesis.

The second branch of the recursive definition of f takes the reciprocal of $1+\tilde{q}$

Every time we take the first recursive branch in the definition of f by multiplying the input by 2, we add 1 to the output. Doing this a_0 times, we multiply the input by 2^{a_0} , adding a_0 to the output.

QED