G Carl Evans November 3, 2025

Induction with Inequalities

Prove that $n^2 > 7n + 1$ for all integers $n \ge 8$

Solution:

Proof by induction on n

Base Case: n = 8

$$8^2 = 64 > 57 = 7 \cdot 8 + 1$$

Inductive Hypothesis: Assume that for all $8 \le n < k, n^2 > 7n + 1$

Consider n = k

By the inductive hypothesis we get

$$(k-1)^{2} > 7(k-1) + 1$$

$$k^{2} - 2k + 1 > 7k - 6$$

$$k^{2} > 7k - 6 - (-2k + 1)$$

$$k^{2} > 7k + (2k - 7)$$

Since $k \ge 8$

$$(2k-7) \ge 2 \cdot 8 - 7 \ge 1$$

So

$$k^2 > 7k + (2k - 7) \ge 7k + 1$$

And thus by induction we have that $n^2 > 7n + 1$ for $n \ge 8$. \square

Big-O Analysis

Prove that 2^n is O(n!)

Solution:

To show that 2^n is O(n!) we need to show that there are positive real numbers c and k such that $0 \le 2^n \le c \cdot n!$ for all n > k.

We will select c = 1 and k = 4 so we will prove the following.

So we now will prove $2^n \le n!$ for all $n \ge 4$

Proof by induction on n

Base Case: n=4

$$2^4 = 16 < 24 = 4!$$

Inductive Hypothesis: Assume that $2^n \le n!$ for all $4 \le n < j$

Consider n = j

$$j! = j(j-1)!$$

By Inductive hypothesis $(j-1)! \ge 2^{j-1}$ so

$$j! = j(j-1)! \ge j \cdot 2^{j-1}$$

Since $j \geq 4$ it holds that $j \geq 4 > 2$ so

$$j! = j(j-1)! \ge j \cdot 2^{j-1} > 2 \cdot 2^{j-1} > 2^j$$

Thus for all $2^n \leq n!$ for all $n \geq 4$ and thus 2^n is $O(n!)\square$

G Carl Evans November 3, 2025

Big-O Analysis

Consider two functions f(n) which is $O(2^n)$ and g(n) which is O(n!). Is it then the case that f(n) is O(g(n))?

Solution:

This is not true. Consider $f(n) = 2^n$ which is clearly $O(2^n)$ and g(n) = 1 which is clearly O(n!) but it is also clear that 2^n is not O(1) so f(n) is not necessarily O(g(n)).