Thursday

Discussion:

6

5

4

 $\mathbf{2}$

3

1

 Name:______

 NetID:______
 Lecture: A B

9

Friday

(15 points) When wizards enter the Magical Senate, the scanner reads M for a male wizard and F for a female wizard. The Magical Senate cannot do business unless at least two male wizards and two female wizards (W) are present. Draw a state machine that reads a sequence of M's and F's from the scanner. When it has seen two of each, it should enter an end state and stay there.

10

11

12

For efficiency, your state machine must be deterministic. Specifically, if you look at any state s and any action a, there is *exactly* one edge labelled a leaving state s. It should use no more than 12 states and, if you can, no more than 9.

Name:												
NetID:				Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	10 11 1		1	2	3	4	5	6
(5 points) Let N be the set same cardinality?		gth strings w										
Solution: Ye its digits into pair binary digits and		e four choice	s for	each p	air, we	e can s	et up	a map	ping	g betv	ween :	pairs of
(10 points) Ch	neck the (single)	box that bes	t cha	racteri	zes eac	ch item	1.					
All infinite-len ing a finite alp	0	finite		count	ably in	finite		ur	ıcouı	ntable	е 🕠	/
If $\mathbb{P}(A)$ is uncois A infinite?	ountable, then	always		,	sometir	mes [nev	ver			
All walks in on graph G .	,	finite	co	ountab	ly infin	nite	$\sqrt{}$	unc	ount	able		
The set of all preal coefficient	polynomials with s.	finite		cou	intably	infini	te		unc	ounta	able	$\sqrt{}$
	from $\{1, 2, 3\}$ to a finite formula.	true		fals	e 🗸	′	not k	nown				

 \mathbf{B}

Name:____

NetID:_____ Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

(10 points) Check the (single) box that best characterizes each item.

$$\neg(p \to q) \equiv \neg p \to \neg q$$
 true false $\sqrt{}$

$$\emptyset \times \emptyset = \qquad \qquad \emptyset \quad \boxed{\checkmark} \qquad \{\emptyset\} \quad \boxed{\qquad \{\emptyset,\emptyset\}} \quad \boxed{\qquad \{(\emptyset,\emptyset)\}} \quad \boxed{\qquad }$$

For any positive integers p, q, and k, if $p \equiv q \pmod{k}$, then $p^2 \equiv q^2 \pmod{k}$

true
$$\sqrt{}$$
 false $\boxed{}$

The composition of two onto functions is onto.

true
$$\sqrt{}$$
 false $\boxed{}$

Chromatic number of a graph = D = D + 1 with D vertices $\leq D + 1$ $\leq D$

Name:												
NetID:			_	Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) Constrings does it ger	nsider the followinerate? Be precis				-		term	ninal s	symbo	ols a	and b .	What
$S \to A B$												
$A \rightarrow a A \mid a$												
$B \to b \ B \mid b$												
Solution: The sequences of one sequences of one sequences bis.	he second rule go or more b's. So		_								_	
(10 points) Ch	neck the (single)	box that be	st cha	racteri	zes eac	h iten	1.					
	If g produce only to $\inf(n) \ll g(g(n))$?	n) . no		р	erhaps			yes				
All ways to ass True/False val n input variab	ues to	$\log n$) \square	$\Theta(n)$ $\Theta(n^1)$			$\Theta(n \log n)$			$\Theta(n)$ $\Theta(2^n)$	·	√	
T(1) = d $T(n) = 2T(n/2)$	$\Theta(n)$ $\Theta(n^{lo}$	og ₃ ²)	$\Theta(n^1)$ $\Theta(n^1)$	$\log n$) $\log_2 3$)		$\Theta(n^2)$ $\Theta(2^n)$		=	(n^3) (3^n)			
•	tree with i inte $+1$ nodes total.		lways		SC	metin	nes		ne	ever		
$\binom{n}{1}$	-1 0			2		n	V	/	unde	efined	l	