CS 173, Fall 17 Examlet 13, Part A

Name:												
NetID:			-	Le	ecture	e:	\mathbf{A}	В				
Discussion	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1

(15 points) Q is building a keychain that will explode when James Bond whistles "ECCCG". Design a finite state machine for Q that listens to an extended sequence of musical notes and enters its end state when it hears this sequence. It should remain in that end state as further notes are heard. For efficiency, the state machine must be deterministic. Specifically, if you look at any state s and any action a, there is **exactly** one edge labelled a leaving state s. Do not include the boring edges that return to the start state upon hearing a note other than C, E, or G.

Draw a deterministic state diagram that will meet his needs, using no more than 9 states and, if you can, no more than 6.

Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) And of baby bears. Consider the bear can be chosen resources or neck answer.	en to have brown	ect any num or cream fu	ıber (r. As	but on suming	ly a fir ; we do	nite nu on't wo	mber) orry a) of b bout	aby b any p	oears. oractio	Eac cal li	h baby mits on
(10 points) Cl	neck the (single)	box that bes	st cha	aracteri	zes eac	h iten	1.					
	athematical func- n't have a finite			fals	e] 1	not kr	nown				
The set \mathbb{Q}^2		finite		count	ably in	finite		u	ncour	ntable	e	
A subset of ar is uncountable	n uncountable set e.	true		fε	alse							
-	of the set of pers less than	finite		counts	ably in	finite		u	ncour	ntable		
All line segme plane.	ents in the real	finite		counta	ably in	finite		u	ncour	ntable	e	

Name:												
NetID:			_	Le	Lecture:		A	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	(
(5 points) Is	this claim true?	Give a conci	rete c	ounter-	-exampl	e or b	oriefly	expla	ain w	hy it	's tru	e.
For any set	s A , B , and C , if	$A \times C \subseteq B$	$\times C$,	then 2	$A \subseteq B$.							
(10 points) C	heck the (single)	box that bes	st cha	racteri	izes eacl	n item	1.					
$p \to q \equiv \neg p -$	$\rightarrow \neg q$			\neg			1					
		tru	ie _		false							
	k are primes,	a 🔲	ma		mala]	a god	(m. la)			
then $gcd(pq, q)$	qk) =	q	pq		pqk		J	$q \gcd$	(p, κ)			
$f: \mathbb{Z} \to \mathbb{Z}$												
f(x) = x + 3 $f(x) = x - 22$		onto	n	ot onto)]	not a	funct	ion			
Number of ed	$ \sigma_{ ext{PS}} $ in $ K_{ ext{PA}} $	7	7	10		1.4			40			
rvaniber of ea	1805 III 113,4.	7		12		14			49			
	nt to estimate $\frac{103}{20}$			er bou				xact a				
10 is		a	lower	bound	Ĺ		onumber not onumber	a bou	nd or	n		

Name:												
NetID:			_	Lecture:			A	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(5 points) Su Express $f(n)$ in tanswer.	ppose we have a erms of $f(n/4)$.	function f Assume n is	define s a po	d by f wer of f	(1) = 0 2 and	5 and $\geq 4. \text{ S}$	f(n) = how y	= 2f(n/2) vork	$+n^2$ and si	(for 1	$n \ge 2$). fy your
(10 points) Ch	neck the (single)	box that be	st cha	racteri	zes eac	ch iten	1.					
n!	$O(2^n)$	Θ	(2^n)		neith	ner of t	hese					
V is the verte with n edges.	ex set of a tree $ \mathbb{P}(V) =$	2^{n-1} 2^{n+1}		2^n n		not	dete	rmine	d [
0	time of the Towersively defined by			$\Gamma(n-1)$ $2T(n/2)$				T(n-2T(n))				
The number of binary tree of	height h	$\geq 2^h$ $\leq 2^{h+1} - 1$		_	$2^{h+1} - 1$	1						
$\mid \mathbb{P}(\{4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	$8 \times \emptyset) \mid \emptyset$	[]	}		0		1		25			2^{5}