\mathbf{CS}	173,	Fa	11	201	4
Exa	\mathbf{mlet}	9.	F	Part	\mathbf{B}

NETID:		

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \ \rightarrow \ S S a \mid c S \mid c c$$

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n+1} 2^k = 2^{n+1} + 1 \qquad \qquad 2^{n+2} - 1 \qquad \qquad 2^{n+2} - 2 \qquad \boxed{\checkmark} \qquad 2^n - 2 \qquad \boxed{}$$

\mathbf{CS}	173 ,	Fal	1	201	4
Exa	amlet	9,	F	Part	\mathbf{B}

NETID:

FIRST: LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Consider the following grammar G

$$S \rightarrow b \ a \ S \ | \ S \ S \ | \ c \ | \ c \ a$$

S is the only start symbol. The terminal symbol are a, b, and c.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

In grammar G, every b is followed immediately by an a. This string can't be generated by G because it has a b with a c right after it.

2. (4 points) Check the (single) box that best characterizes each item.

n-1				
$\sum 2^k$	$2^n - 2$	2^n-1 \checkmark	$2^{n-1}-1$	$2^{n+1}-1$
k=0				

A full m-ary tree with i internal nodes has mi + 1 nodes total.

always 🗸

sometimes

never

\mathbf{CS}	173,	Fal	11	201	4
Exa	mlet	9,	\mathbf{P}	art	В

NETID:

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Here is a grammar with start symbol S and terminals symbols a,b, and c. Circle the trees that match the grammar.

		S	
	/	-	
a		\mathbf{c}	b

2. (4 points) Check the (single) box that best characterizes each item.

The number of nodes in a binary tree of height h

$$\geq 2^h \qquad \qquad = 2^{h+1} - 1 \qquad \qquad$$

$$\leq 2^{h+1} - 1 \quad \boxed{\checkmark} \qquad \geq 2^{h+1} - 1 \quad \boxed{}$$

The level of the root node in a tree of height h.

$$h-1$$
 h $h+1$

CS	173,	Fa	\mathbb{I}	201	4
Exa	mlet	9,	Р	art	В

NETID:		

FIRST:	LAST:

Discussion: Thursday 2 3 4 5 Friday 9 10 11 12 1 2

1. (8 points) Consider the following grammar G

$$S \rightarrow S \ b \ S \ | \ a \ | \ c \ d$$

S is the only start symbol. The terminal symbols are a, b, c, and d.

Here are two sequences of leaf labels. For each sequence, either draw a tree from grammar G whose leaves have this sequence of labels, or else explain briefly why G cannot generate this sequence of leaf labels.

 $a \ a \ a \ c \ d$

In grammar G, making strings with more than two leaves requires using the first rule (SbS) which produces a b. This string can't be generated by G because it is more than two characters long with no b in it.

2. (4 points) Check the (single) box that best characterizes each item.

Total number of leaves in a 3-ary tree of height h

$$3^h$$
 $\leq 3^h$

$$\frac{1}{2}(3^{h+1}-1)$$
 $3^{h+1}-1$

The mathematical symbol for an empty (zero-length) string

$$\epsilon$$
 $\sqrt{}$

NULL